pytorch三层全连接层实现手写字母识别方式

 更新时间:2020年01月14日 16:21:42   作者:沙雅云   我要评论
今天小编就为大家分享一篇pytorch三层全连接层实现手写字母识别方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

先用最简单的三层全连接神经网络,然后添加激活层查看实验结果,最后加上批标准化验证是否有效

首先根据已有的模板定义网络结构SimpleNet,命名为net.py

import torch
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from torch import nn,optim
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
#定义三层全连接神经网络
class simpleNet(nn.Module):
 def __init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):#输入维度,第一层的神经元个数、第二层的神经元个数,以及第三层的神经元个数
  super(simpleNet,self).__init__()
  self.layer1=nn.Linear(in_dim,n_hidden_1)
  self.layer2=nn.Linear(n_hidden_1,n_hidden_2)
  self.layer3=nn.Linear(n_hidden_2,out_dim)
 def forward(self,x):
  x=self.layer1(x)
  x=self.layer2(x)
  x=self.layer3(x)
  return x
 
 
#添加激活函数
class Activation_Net(nn.Module):
 def __init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):
  super(NeutalNetwork,self).__init__()
  self.layer1=nn.Sequential(#Sequential组合结构
  nn.Linear(in_dim,n_hidden_1),nn.ReLU(True))
  self.layer2=nn.Sequential(
  nn.Linear(n_hidden_1,n_hidden_2),nn.ReLU(True))
  self.layer3=nn.Sequential(
  nn.Linear(n_hidden_2,out_dim))
 def forward(self,x):
  x=self.layer1(x)
  x=self.layer2(x)
  x=self.layer3(x)
  return x
#添加批标准化处理模块,皮标准化放在全连接的后面,非线性的前面
class Batch_Net(nn.Module):
 def _init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):
  super(Batch_net,self).__init__()
  self.layer1=nn.Sequential(nn.Linear(in_dim,n_hidden_1),nn.BatchNormld(n_hidden_1),nn.ReLU(True))
  self.layer2=nn.Sequential(nn.Linear(n_hidden_1,n_hidden_2),nn.BatchNormld(n_hidden_2),nn.ReLU(True))
  self.layer3=nn.Sequential(nn.Linear(n_hidden_2,out_dim))
 def forword(self,x):
  x=self.layer1(x)
  x=self.layer2(x)
  x=self.layer3(x)
  return x
  
  

训练网络,

import torch
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from torch import nn,optim
from torch.utils.data import DataLoader
from torchvision import datasets,transforms
#定义一些超参数
import net
batch_size=64
learning_rate=1e-2
num_epoches=20
#预处理
data_tf=transforms.Compose(
[transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])#将图像转化成tensor,然后继续标准化,就是减均值,除以方差

#读取数据集
train_dataset=datasets.MNIST(root='./data',train=True,transform=data_tf,download=True)
test_dataset=datasets.MNIST(root='./data',train=False,transform=data_tf)
#使用内置的函数导入数据集
train_loader=DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
test_loader=DataLoader(test_dataset,batch_size=batch_size,shuffle=False)

#导入网络,定义损失函数和优化方法
model=net.simpleNet(28*28,300,100,10)
if torch.cuda.is_available():#是否使用cuda加速
 model=model.cuda()
criterion=nn.CrossEntropyLoss()
optimizer=optim.SGD(model.parameters(),lr=learning_rate)
import net
n_epochs=5
for epoch in range(n_epochs):
 running_loss=0.0
 running_correct=0
 print("epoch {}/{}".format(epoch,n_epochs))
 print("-"*10)
 for data in train_loader:
  img,label=data
  img=img.view(img.size(0),-1)
  if torch.cuda.is_available():
   img=img.cuda()
   label=label.cuda()
  else:
   img=Variable(img)
   label=Variable(label)
  out=model(img)#得到前向传播的结果
  loss=criterion(out,label)#得到损失函数
  print_loss=loss.data.item()
  optimizer.zero_grad()#归0梯度
  loss.backward()#反向传播
  optimizer.step()#优化
  running_loss+=loss.item()
  epoch+=1
  if epoch%50==0:
   print('epoch:{},loss:{:.4f}'.format(epoch,loss.data.item()))
 



训练的结果截图如下:

测试网络

#测试网络
model.eval()#将模型变成测试模式
eval_loss=0
eval_acc=0
for data in test_loader:
 img,label=data
 img=img.view(img.size(0),-1)#测试集不需要反向传播,所以可以在前项传播的时候释放内存,节约内存空间
 if torch.cuda.is_available():
  img=Variable(img,volatile=True).cuda()
  label=Variable(label,volatile=True).cuda()
 else:
  img=Variable(img,volatile=True)
  label=Variable(label,volatile=True)
 out=model(img)
 loss=criterion(out,label)
 eval_loss+=loss.item()*label.size(0)
 _,pred=torch.max(out,1)
 num_correct=(pred==label).sum()
 eval_acc+=num_correct.item()
print('test loss:{:.6f},ac:{:.6f}'.format(eval_loss/(len(test_dataset)),eval_acc/(len(test_dataset))))

训练的时候,还可以加入一些dropout,正则化,修改隐藏层神经元的个数,增加隐藏层数,可以自己添加。

以上这篇pytorch三层全连接层实现手写字母识别方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python程序退出方式小结

    Python程序退出方式小结

    这篇文章主要介绍了Python程序退出方式小结,具有一定参考价值,需要的朋友可以了解下。
    2017-12-12
  • 详解如何在Apache中运行Python WSGI应用

    详解如何在Apache中运行Python WSGI应用

    在生产环境上,一般会使用比较健壮的Web服务器,如Apache来运行我们的应用,本文中我们就会介绍如何使用Apache模块mod_wsgi来运行Python WSGI应用。感兴趣的小伙伴们可以参考一下
    2019-01-01
  • python机器学习包mlxtend的安装和配置详解

    python机器学习包mlxtend的安装和配置详解

    这篇文章主要介绍了python机器学习包mlxtend的安装和配置详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • python环境路径配置以及命令行运行脚本

    python环境路径配置以及命令行运行脚本

    这篇文章主要为大家详细介绍了python环境路径配置以及命令行运行脚本,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-04-04
  • 教你学会使用Python正则表达式

    教你学会使用Python正则表达式

    正则表达式是一个特殊的字符序列,它能帮助你方便的检查一个字符串是否与某种模式匹配。 Python 自1.5版本起增加了re 模块,它提供 Perl 风格的正则表达式模式。re 模块使 Python 语言拥有全部的正则表达式功能。
    2017-09-09
  • Pandas 重塑(stack)和轴向旋转(pivot)的实现

    Pandas 重塑(stack)和轴向旋转(pivot)的实现

    这篇文章主要介绍了Pandas 重塑(stack)和轴向旋转(pivot)的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • Python的Django框架中的Context使用

    Python的Django框架中的Context使用

    这篇文章主要介绍了Python的Django框架中的Context使用,相关的渲染是Django中创建模版的关键,需要的朋友可以参考下
    2015-07-07
  • python多线程socket编程之多客户端接入

    python多线程socket编程之多客户端接入

    这篇文章主要为大家详细介绍了python多线程socket编程之多客户端接入,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-09-09
  • python rsync服务器之间文件夹同步脚本

    python rsync服务器之间文件夹同步脚本

    这篇文章主要为大家详细介绍了python rsync服务器之间文件夹同步脚本,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-08-08
  • python调用opencv实现猫脸检测功能

    python调用opencv实现猫脸检测功能

    这篇文章主要介绍了python调用opencv实现猫脸检测功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-01-01

最新评论