pytorch-神经网络拟合曲线实例

 更新时间:2020年01月15日 08:46:44   作者:马飞飞  
今天小编就为大家分享一篇pytorch-神经网络拟合曲线实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

代码已经调通,跑出来的效果如下:

# coding=gbk
import torch
import matplotlib.pyplot as plt
from torch.autograd import Variable
import torch.nn.functional as F
 
'''
 Pytorch是一个拥有强力GPU加速的张量和动态构建网络的库,其主要构建是张量,所以可以把PyTorch当做Numpy
 来用,Pytorch的很多操作好比Numpy都是类似的,但是其能够在GPU上运行,所以有着比Numpy快很多倍的速度。
 训练完了,发现隐层越大,拟合的速度越是快,拟合的效果越是好
'''
 
def train():
 print('------  构建数据集  ------')
 # torch.linspace是为了生成连续间断的数据,第一个参数表示起点,第二个参数表示终点,第三个参数表示将这个区间分成平均几份,即生成几个数据
 x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
 #torch.rand返回的是[0,1]之间的均匀分布 这里是使用一个计算式子来构造出一个关联结果,当然后期要学的也就是这个式子
 y = x.pow(2) + 0.2 * torch.rand(x.size())
 # Variable是将tensor封装了下,用于自动求导使用
 x, y = Variable(x), Variable(y)
 #绘图展示
 plt.scatter(x.data.numpy(), y.data.numpy())
 #plt.show()
 
 print('------  搭建网络  ------')
 #使用固定的方式继承并重写 init和forword两个类
 class Net(torch.nn.Module):
  def __init__(self,n_feature,n_hidden,n_output):
   #初始网络的内部结构
   super(Net,self).__init__()
   self.hidden=torch.nn.Linear(n_feature,n_hidden)
   self.predict=torch.nn.Linear(n_hidden,n_output)
  def forward(self, x):
   #一次正向行走过程
   x=F.relu(self.hidden(x))
   x=self.predict(x)
   return x
 net=Net(n_feature=1,n_hidden=1000,n_output=1)
 print('网络结构为:',net)
 
 print('------  启动训练  ------')
 loss_func=F.mse_loss
 optimizer=torch.optim.SGD(net.parameters(),lr=0.001)
 
 #使用数据 进行正向训练,并对Variable变量进行反向梯度传播 启动100次训练
 for t in range(10000):
  #使用全量数据 进行正向行走
  prediction=net(x)
  loss=loss_func(prediction,y)
  optimizer.zero_grad() #清除上一梯度
  loss.backward() #反向传播计算梯度
  optimizer.step() #应用梯度
 
  #间隔一段,对训练过程进行可视化展示
  if t%5==0:
   plt.cla()
   plt.scatter(x.data.numpy(),y.data.numpy()) #绘制真是曲线
   plt.plot(x.data.numpy(),prediction.data.numpy(),'r-',lw=5)
   plt.text(0.5,0,'Loss='+str(loss.data[0]),fontdict={'size':20,'color':'red'})
   plt.pause(0.1)
 plt.ioff()
 plt.show()
 print('------  预测和可视化  ------')
 
if __name__=='__main__':
 train()

以上这篇pytorch-神经网络拟合曲线实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python issubclass和isinstance函数的具体使用

    Python issubclass和isinstance函数的具体使用

    本文主要介绍了Python issubclass和isinstance函数的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-02-02
  • 用python3 返回鼠标位置的实现方法(带界面)

    用python3 返回鼠标位置的实现方法(带界面)

    今天小编就为大家分享一篇用python3 返回鼠标位置的实现方法(带界面),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python中from module import * 的一个坑

    python中from module import * 的一个坑

    from module import *把module中的成员全部导到了当前的global namespace,访问起来就比较方便了。当然,python style一般不建议这么做,因为可能引起name conflict。
    2014-07-07
  • 详解python中的线程与线程池

    详解python中的线程与线程池

    这篇文章主要介绍了python线程与线程池,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • python与pycharm有何区别

    python与pycharm有何区别

    在本篇文章里小编给大家整理了关于pycharm与python的区别相关内容,有需要的朋友们可以学习下。
    2020-07-07
  • Python按钮的响应事件详解

    Python按钮的响应事件详解

    今天小编就为大家分享一篇关于Python按钮的响应事件详解,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-03-03
  • 浅谈TensorFlow之稀疏张量表示

    浅谈TensorFlow之稀疏张量表示

    这篇文章主要介绍了浅谈TensorFlow之稀疏张量表示,具有很好的参考就价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • 安装并免费使用Pycharm专业版(学生/教师)

    安装并免费使用Pycharm专业版(学生/教师)

    这篇文章主要介绍了安装并免费使用Pycharm专业版(学生/教师),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-09-09
  • python实现与Oracle数据库交互操作示例

    python实现与Oracle数据库交互操作示例

    这篇文章主要为大家介绍了python实现与Oracle数据库交互操作示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家,多多进步,早日升职加薪
    2021-10-10
  • Python-pandas返回重复数据的index问题

    Python-pandas返回重复数据的index问题

    这篇文章主要介绍了Python-pandas返回重复数据的index问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02

最新评论