pytorch实现线性拟合方式

 更新时间:2020年01月15日 09:34:23   作者:wangqianqianya  
今天小编就为大家分享一篇pytorch实现线性拟合方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

一维线性拟合

数据为y=4x+5加上噪音

结果:

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import pyplot as plt
from torch.autograd import Variable
import torch
from torch import nn
 
X = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
Y = 4*X + 5 + torch.rand(X.size())
 
class LinearRegression(nn.Module):
 def __init__(self):
  super(LinearRegression, self).__init__()
  self.linear = nn.Linear(1, 1) # 输入和输出的维度都是1
 def forward(self, X):
  out = self.linear(X)
  return out
 
model = LinearRegression()
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-2)
 
num_epochs = 1000
for epoch in range(num_epochs):
 inputs = Variable(X)
 target = Variable(Y)
 # 向前传播
 out = model(inputs)
 loss = criterion(out, target)
 
 # 向后传播
 optimizer.zero_grad() # 注意每次迭代都需要清零
 loss.backward()
 optimizer.step()
 
 if (epoch + 1) % 20 == 0:
  print('Epoch[{}/{}], loss:{:.6f}'.format(epoch + 1, num_epochs, loss.item()))
model.eval()
predict = model(Variable(X))
predict = predict.data.numpy()
plt.plot(X.numpy(), Y.numpy(), 'ro', label='Original Data')
plt.plot(X.numpy(), predict, label='Fitting Line')
plt.show()
 

多维:

from itertools import count
import torch
import torch.autograd
import torch.nn.functional as F
 
POLY_DEGREE = 3
def make_features(x):
 """Builds features i.e. a matrix with columns [x, x^2, x^3]."""
 x = x.unsqueeze(1)
 return torch.cat([x ** i for i in range(1, POLY_DEGREE+1)], 1)
 
 
W_target = torch.randn(POLY_DEGREE, 1)
b_target = torch.randn(1)
 
 
def f(x):
 return x.mm(W_target) + b_target.item()
def get_batch(batch_size=32):
 random = torch.randn(batch_size)
 x = make_features(random)
 y = f(x)
 return x, y
# Define model
fc = torch.nn.Linear(W_target.size(0), 1)
batch_x, batch_y = get_batch()
print(batch_x,batch_y)
for batch_idx in count(1):
 # Get data
 
 
 # Reset gradients
 fc.zero_grad()
 
 # Forward pass
 output = F.smooth_l1_loss(fc(batch_x), batch_y)
 loss = output.item()
 
 # Backward pass
 output.backward()
 
 # Apply gradients
 for param in fc.parameters():
  param.data.add_(-0.1 * param.grad.data)
 
 # Stop criterion
 if loss < 1e-3:
  break
 
 
def poly_desc(W, b):
 """Creates a string description of a polynomial."""
 result = 'y = '
 for i, w in enumerate(W):
  result += '{:+.2f} x^{} '.format(w, len(W) - i)
 result += '{:+.2f}'.format(b[0])
 return result
 
 
print('Loss: {:.6f} after {} batches'.format(loss, batch_idx))
print('==> Learned function:\t' + poly_desc(fc.weight.view(-1), fc.bias))
print('==> Actual function:\t' + poly_desc(W_target.view(-1), b_target))

以上这篇pytorch实现线性拟合方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 浅谈python numpy中nonzero()的用法

    浅谈python numpy中nonzero()的用法

    下面小编就为大家分享一篇浅谈python numpy中nonzero()的用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • Python爬虫获取基金基本信息

    Python爬虫获取基金基本信息

    这篇文章主要介绍了Python爬虫获取基金基本信息,文章基于上一篇文章内容基于python的相关资料展开主题,需要的小伙伴可以参考一下
    2022-05-05
  • python中将函数赋值给变量时需要注意的一些问题

    python中将函数赋值给变量时需要注意的一些问题

    变量赋值是我们在日常开发中经常会遇到的一个问题,下面这篇文章主要给大家介绍了关于python中将函数赋值给变量时需要注意的一些问题,文中通过示例代码介绍的非常详细,对大家具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-08-08
  • 使用BeeWare实现iOS调用Python方式

    使用BeeWare实现iOS调用Python方式

    这篇文章主要介绍了使用BeeWare实现iOS调用Python方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-12-12
  • Python实现将n个点均匀地分布在球面上的方法

    Python实现将n个点均匀地分布在球面上的方法

    这篇文章主要介绍了Python实现将n个点均匀地分布在球面上的方法,涉及Python绘图的技巧与相关数学函数的调用,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • Tensorflow2.4使用Tuner选择模型最佳超参详解

    Tensorflow2.4使用Tuner选择模型最佳超参详解

    这篇文章主要介绍了Tensorflow2.4使用Tuner选择模型最佳超参详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-11-11
  • 详解Python如何查看一个函数的参数

    详解Python如何查看一个函数的参数

    inspect模块提供了许多用于检查对象的工具函数,其中包括用于获取函数参数信息的函数,所以在Python中,大家可以使用inspect模块来查看一个函数的参数信息,本文就来和大家讲讲具体操作吧
    2023-05-05
  • wxpython布局的实现方法

    wxpython布局的实现方法

    这篇文章主要介绍了wxpython布局的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • Python线性拟合实现函数与用法示例

    Python线性拟合实现函数与用法示例

    这篇文章主要介绍了Python线性拟合实现函数与用法,结合实例形式分析了Python使用线性拟合算法与不使用线性拟合算法的相关算法操作技巧,需要的朋友可以参考下
    2018-12-12
  • python网络编程之UDP通信实例(含服务器端、客户端、UDP广播例子)

    python网络编程之UDP通信实例(含服务器端、客户端、UDP广播例子)

    UDP,用户数据报传输协议,它位于TCP/IP协议的传输层,是一种无连接的协议,它发送的报文不能确定是否完整地到达了另外一端
    2014-04-04

最新评论