pytorch实现对输入超过三通道的数据进行训练

 更新时间:2020年01月15日 10:06:51   作者:东城青年  
今天小编就为大家分享一篇pytorch实现对输入超过三通道的数据进行训练,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

案例背景:视频识别

假设每次输入是8s的灰度视频,视频帧率为25fps,则视频由200帧图像序列构成.每帧是一副单通道的灰度图像,通过pythonb里面的np.stack(深度拼接)可将200帧拼接成200通道的深度数据.进而送到网络里面去训练.

如果输入图像200通道觉得多,可以对视频进行抽帧,针对具体场景可以随机抽帧或等间隔抽帧.比如这里等间隔抽取40帧.则最后输入视频相当于输入一个40通道的图像数据了.

pytorch对超过三通道数据的加载:

读取视频每一帧,转为array格式,然后依次将每一帧进行深度拼接,最后得到一个40通道的array格式的深度数据,保存到pickle里.

对每个视频都进行上述操作,保存到pickle里.

我这里将火的视频深度数据保存在一个.pkl文件中,一共2504个火的视频,即2504个火的深度数据.

将非火的视频深度数据保存在一个.pkl文件中,一共3985个非火的视频,即3985个非火的深度数据.

数据加载

import torch 
from torch.utils import data
import os
from PIL import Image
import numpy as np
import pickle
 
class Fire_Unfire(data.Dataset):
  def __init__(self,fire_path,unfire_path):
    self.pickle_fire = open(fire_path,'rb')
    self.pickle_unfire = open(unfire_path,'rb')
    
  def __getitem__(self,index):
    if index <2504:
      fire = pickle.load(self.pickle_fire)#高*宽*通道
      fire = fire.transpose(2,0,1)#通道*高*宽
      data = torch.from_numpy(fire)
      label = 1
      return data,label
    elif index>=2504 and index<6489:
      unfire = pickle.load(self.pickle_unfire)
      unfire = unfire.transpose(2,0,1)
      data = torch.from_numpy(unfire)
      label = 0
      return data,label
    
  def __len__(self):
    return 6489
root_path = './datasets/train'
dataset = Fire_Unfire(root_path +'/fire_train.pkl',root_path +'/unfire_train.pkl')
 
#转换成pytorch网络输入的格式(批量大小,通道数,高,宽)
from torch.utils.data import DataLoader
fire_dataloader = DataLoader(dataset,batch_size=4,shuffle=True,drop_last = True)

模型训练

import torch
from torch.utils import data
from nets.mobilenet import mobilenet
from config.config import default_config
from torch.autograd import Variable as V
import numpy as np
import sys
import time
 
opt = default_config()
def train():
  #模型定义
  model = mobilenet().cuda()
  if opt.pretrain_model:
    model.load_state_dict(torch.load(opt.pretrain_model))
  
  #损失函数
  criterion = torch.nn.CrossEntropyLoss().cuda()
  
  #学习率
  lr = opt.lr
  
  #优化器
  optimizer = torch.optim.SGD(model.parameters(),lr = lr,weight_decay=opt.weight_decay)
  
  
  pre_loss = 0.0
  #训练
  for epoch in range(opt.max_epoch):
     #训练数据
    train_data = Fire_Unfire(opt.root_path +'/fire_train.pkl',opt.root_path +'/unfire_train.pkl')
    train_dataloader = data.DataLoader(train_data,batch_size=opt.batch_size,shuffle=True,drop_last = True)
    loss_sum = 0.0
    for i,(datas,labels) in enumerate(train_dataloader):
      #print(i,datas.size(),labels)
      #梯度清零
      optimizer.zero_grad()
      #输入
      input = V(datas.cuda()).float()
      #目标
      target = V(labels.cuda()).long()
      #输出
      score = model(input).cuda()
      #损失
      loss = criterion(score,target)
      loss_sum += loss
      #反向传播
      loss.backward()
      #梯度更新
      optimizer.step()      
    print('{}{}{}{}{}'.format('epoch:',epoch,',','loss:',loss))
    torch.save(model.state_dict(),'models/mobilenet_%d.pth'%(epoch+370))

RuntimeError: Expected object of scalar type Long but got scalar type Float for argument #2 'target'

解决方案:target = target.long()

以上这篇pytorch实现对输入超过三通道的数据进行训练就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python面向对象之继承代码详解

    Python面向对象之继承代码详解

    这篇文章主要介绍了Python面向对象之继承代码详解,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • python 遍历目录(包括子目录)下所有文件的实例

    python 遍历目录(包括子目录)下所有文件的实例

    今天小编就为大家分享一篇python 遍历目录(包括子目录)下所有文件的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • pytorch 预训练模型读取修改相关参数的填坑问题

    pytorch 预训练模型读取修改相关参数的填坑问题

    这篇文章主要介绍了pytorch 预训练模型读取修改相关参数的填坑问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • 基于Python编写一个PDF转换工具箱

    基于Python编写一个PDF转换工具箱

    这篇文章主要为大家详细介绍了如何使用Python编写一个PDF转换工具箱,可以实现PDF转图片,word,拆分,删除,提取等功能,感兴趣的可以了解下
    2024-12-12
  • Python读取中文路径出现乱码的问题解决

    Python读取中文路径出现乱码的问题解决

    本文主要介绍了Python读取中文路径出现乱码的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-06-06
  • 关于python常见异常以及处理方法

    关于python常见异常以及处理方法

    这篇文章主要介绍了关于python常见异常以及处理方法,python用异常对象(exception object)来表示异常情况。遇到错误后,会引发异常,需要的朋友可以参考下
    2023-04-04
  • python回溯算法实现全排列小练习分享

    python回溯算法实现全排列小练习分享

    这篇文章主要给大家分享的是python回溯算法实现全排列小练习,文章根据例子:输入列表L(不含重复元素),输出L的全排列展开学习,需要的小伙伴可以参考一下
    2022-02-02
  • Python的Flask框架应用程序实现使用QQ账号登录的方法

    Python的Flask框架应用程序实现使用QQ账号登录的方法

    利用QQ开放平台的API使用QQ账号登录是现在很多网站都具备的功能,而对于Flask框架来说则有Flask-OAuthlib这个现成的轮子,这里我们就来看一下Python的Flask框架应用程序实现使用QQ账号登录的方法
    2016-06-06
  • Python装饰器详细介绍

    Python装饰器详细介绍

    这篇文章主要介绍了Python @property装饰器的用法,在Python中,可以通过@property装饰器将一个方法转换为属性,从而实现用于计算的属性,下面文章围绕主题展开更多相关详情,感兴趣的小伙伴可以参考一下
    2022-12-12
  • 详解Python中的type和object

    详解Python中的type和object

    这篇文章主要介绍了Python中type和object的相关知识,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-08-08

最新评论