tensorflow-gpu安装的常见问题及解决方案

 更新时间:2020年01月20日 13:25:21   作者:上山老人  
这篇文章主要介绍了tensorflow-gpu安装的常见问题及解决方案,本文给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友参考下吧,需要的朋友可以参考下

装tensorflow-gpu的时候经常遇到问题,自己装过几次,经常遇到相同或者类似的问题,所以打算记录一下,也希望对其他人有所帮助

基本信息

  • tensorflow-gpu
  • pip安装(virtualenv等虚拟安装实质也是pip安装,只是建了个独立的环境,不会影响系统环境,查问题比较容易,最多重新再创建一个干净的环境再来)

安装完之后会用import tensorflow看是否安装成功,结果报错,主要有碰到下面两大类报错信息:

1.ImportError: DLL load failed: 找不到指定的模块 之pywrap_tensorflow.py

报错信息里面有大量的pywrap_xxx相关的脚本报错:

Traceback (most recent call last):
 File "E:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module>
 from tensorflow.python.pywrap_tensorflow_internal import *
 File "E:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module>
 _pywrap_tensorflow_internal = swig_import_helper()
 File "E:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper
 _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
 File "E:\study\machinelearning\ENV\lib\imp.py", line 242, in load_module
 return load_dynamic(name, filename, file)
 File "E:\study\machinelearning\ENV\lib\imp.py", line 342, in load_dynamic
 return _load(spec)
ImportError: DLL load failed: 找不到指定的模块。

这类错误出现的最多,主要有几大类原因:

(1)Microsoft Visual C++ 2015 Redistributable Update 3 没有装

这个是自己第一次装的时候碰到的,下载 vc_redist.x64.exe 安装之后就ok了

再生波澜

自己今天再装的时候,下载下来发现安装不了,看日志是说我的vs版本比较新,所以不能装。这个时候可以可以看看自己本机的system32下面有没有MSVCP140.DLL这个文件

其他解决方案

有些网友说用的比较新的tensorflow,装了2017的Redistributable包就好了,你也可以试试

我再装完2017的包之后,并且检查自己系统中已经有了MSVCP140.DLL文件依旧报同样的错误

(2)cuda和cudnn版本不一致

这个问题也是非常多的,我装了很多次的cuda基本上没有安装失败过,但是遇到和cudnn版本不一致的情况。因为下载的cuda默认是最新版本的cuda10.0,而我下载的cudnn当时用的旧的,也就是给cuda9.0的,所以后面换了一下也就解决问题了

cuda下载

在这里插入图片描述

我这里默认点完自己系统的配置(win10x64)得到的是最新的cuda10-win10,可以点击最右边的Legacy Releases看到更早一点的版本

cuda安装和验证

一路next貌似没遇到过啥问题

验证的话:在命令行下面输入nvcc -V,看是否OK

另外sample下面的两个是deviceQuery.exe和bandwidthTest.exe执行都没有出现问题过

cudnn下载

要登录nvidia developer账号

在这里插入图片描述

点开最下面的Archived cuDNN Releases可以看到更多的版本,因为我下载的是cuda-9.0,稳妥起见,我下载的cudnn版本是:Download cuDNN v7.0.5 (Dec 5, 2017), for CUDA 9.0

按照道理来讲这里的Download cuDNN v7.5.0 (Feb 21, 2019), for CUDA 9.0应该也可以,下次验证再确认一下。

cudnn安装

在下载的页面可以打开Installation-Guide看一下windows的cudnn安装指南,主要有以下操作

(1)把解压缩的cudnn下面的bin、lib和include三个文件夹下面的文件拷贝到cuda安装的目录下面同名的目录下面

cuda路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0

(2)把CUDA路径添加到环境变量的CUDA_PATH中

在这里插入图片描述

cuda本书在安装的时候会把cuda的安装路径添加的环境变量的path中(注意:是在path的最前面,不容易看到),所以不必自己把cuda的路径添加到path中

这里自己是把解压后的cudnn放到d盘,比如:D\cuda,然后把D:\cuda\bin放到了path中,因为网上有些人是这样建议的。但是看cudn的安装指南并没有提及到,所以感觉应该不需要

很遗憾的是,今天保证这里版本一直之后,还是依旧报 = =

(3)tensorflow-gpu版本不一致

安装tensorflow-gpu的时候一般都是用的默认指令:

pip install --upgrade tensorflow-gpu

结果是会把tensorflow-gpu的最新版本装上,我的版本情况如下:

(1)python:3.6.0 (2)cuda-9.0 (3)cudnn-7.0 (4)tensorflow-gpu-1.13.0

最新的cuda是10.0了,但是我装的是9.0,所以我把tensorflow-gpu装到1.12.0,然后完美解决问题了。_

pip uninstall 
tensorflow-gpu==1.13.0
pip install tensorflow-gpu==1.12.0

这里说明tensorflow-gpu1.13.0估计是用了最新的cuda版本中的内容,也算是版本不一致了。

如果跟我一样,上面的问题都解决了,那就看看是不是这里版本太新或者太旧了。这里有个插曲,因为我开始不小心把1.12.0输成了1.2.0,结果还是不行,没注意结果纯粹浪费了一段时间。

(4)其他python库版本问题等

网上有些人还遇到numpy等python库版本等的问题,我倒是没遇到,因为安装tensorflw-gpu的时候会把相关的依赖包都给下载下来

2.TensorFlow pip installation issue: cannot import name 'descriptor'之graph_pb2.py

报错信息如下有graph_xxx相关的脚本报错:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "F:\study\machinelearning\ENV\lib\site-packages\tensorflow\__init__.py", line 24, in <module>
 from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import
 File "F:\study\machinelearning\ENV\lib\site-packages\tensorflow\python\__init__.py", line 59, in <module>
 from tensorflow.core.framework.graph_pb2 import *
 File "F:\study\machinelearning\ENV\lib\site-packages\tensorflow\core\framework\graph_pb2.py", line 6, in <module>
 from google.protobuf import descriptor as _descriptor
 File "F:\study\machinelearning\ENV\lib\site-packages\google\protobuf\descriptor.py", line 47, in <module>
 from google.protobuf.pyext import _message
ImportError: DLL load failed: 找不到指定的程序。

这个我碰到过两次,都是protobuf的版本高了的缘故,网上搜到的也是这个原因,把protobuf的版本从3.6.1降到3.6.0解决

pip list
pip uninstall protobuf
pip install protobuf==3.6.0
pip list

参考

[1]import error: load dll failed

总结

以上所述是小编给大家介绍的tensorflow-gpu安装的常见问题及解决方案,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

  • 解决python中导入win32com.client出错的问题

    解决python中导入win32com.client出错的问题

    今天小编就为大家分享一篇解决python中导入win32com.client出错的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • python使用pil进行图像处理(等比例压缩、裁剪)实例代码

    python使用pil进行图像处理(等比例压缩、裁剪)实例代码

    这篇文章主要介绍了python使用pil进行图像处理(等比例压缩、裁剪)实例代码,首先介绍了pil的相关内容,然后分享了实例代码,具有一定借鉴价值,需要的朋友可以参考下。
    2017-12-12
  • Python接口自动化浅析logging日志原理及模块操作流程

    Python接口自动化浅析logging日志原理及模块操作流程

    这篇文章主要为大家介绍了Python接口自动化系列文章浅析logging日志原理及模块操作流程,文中详细说明了为什么需要日志?日志是什么?以及日志用途等基本的原理
    2021-08-08
  • Python3基础教程之递归函数简单示例

    Python3基础教程之递归函数简单示例

    这篇文章主要给大家介绍了关于Python3基础教程之递归函数简单示例的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Python3具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-06-06
  • Python编程使用matplotlib挑钻石seaborn画图入门教程

    Python编程使用matplotlib挑钻石seaborn画图入门教程

    这篇文章主要为大家介绍了Python编程中使用matplotlib绘图包来挑出完美的钻石,本篇是seaborn包画图使用入门篇,有需要的朋友可以借鉴参考下
    2021-10-10
  • 在Python中比较列表中的相邻元素的几种方法

    在Python中比较列表中的相邻元素的几种方法

    在Python中,我们可以通过多种方式来对比列表中的相邻项,我们没有看到任何直接或间接的应用程序来比较相邻的元素,例如确定最近的趋势,优化用户体验,股票市场分析等等,本文将探讨在Python中如何比较列表中的相邻元素的几种方法,需要的朋友可以参考下
    2025-01-01
  • Python格式化输出字符串的五种方法总结

    Python格式化输出字符串的五种方法总结

    Python语言有许多优点,常用于不同的领域,如数据科学、web开发、自动化运维等。本文将学习如何使用字符串中内置的方法来格式化字符串,感兴趣的可以了解一下
    2022-06-06
  • 使用python-pptx包批量修改ppt格式的实现

    使用python-pptx包批量修改ppt格式的实现

    今天小编就为大家分享一篇使用python-pptx包批量修改ppt格式的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • 如何使用Python实现PPT批量转图片

    如何使用Python实现PPT批量转图片

    这篇文章主要为大家详细介绍了如何使用Python开发一个带有图形界面的PPT批量转图片工具,文中的示例代码讲解详细,有需要的小伙伴可以了解下
    2025-02-02
  • Python文件读写处理日常任务终极工具实例

    Python文件读写处理日常任务终极工具实例

    Python文件的读写操作时,有很多需要考虑的细节,这包括文件打开方式、读取和写入数据的方法、异常处理等,在本文中,将深入探讨Python中的文件操作,旨在提供全面的指南,帮你充分了解Python文件的读写
    2023-11-11

最新评论