tensorflow 限制显存大小的实现
更新时间:2020年02月03日 11:52:31 作者:安阳小栈-客官歇会吧
今天小编就为大家分享一篇tensorflow 限制显存大小的实现,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
Python在用GPU跑模型的时候最好开多进程,因为很明显这种任务就是计算密集型的。
用进程池好管理,但是tensorflow默认情况会最大占用显存,尽管该任务并不需要这么多,因此我们可以设置显存的按需获取,这样程序就不会死掉了。
1. 按比例预留:
tf_config = tensorflow.ConfigProto() tf_config.gpu_options.per_process_gpu_memory_fraction = 0.5 # 分配50% session = tensorflow.Session(config=tf_config)
2. 或者干脆自适应然后自动增长:
tf_config = tensorflow.ConfigProto() tf_config.gpu_options.allow_growth = True # 自适应 session = tensorflow.Session(config=tf_config)
以上这篇tensorflow 限制显存大小的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
Pytest+request+Allure实现接口自动化框架
接口自动化是指模拟程序接口层面的自动化,由于接口不易变更,维护成本更小,所以深受各大公司的喜爱,本文主要介绍了Pytest+request+Allure实现接口自动化框架,感兴趣的可以了解一下2021-07-07


最新评论