tensorflow mnist 数据加载实现并画图效果
关于 TensorFlow
TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等。TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程师们开发出来,用于机器学习和深度神经网络方面的研究,但这个系统的通用性使其也可广泛用于其他计算领域。
Tensorflow是谷歌公司在2015年9月开源的一个深度学习框架。
正文开始:
直接看代码:
%matplotlib
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
mnist = input_data.read_data_sets('MNIST_data', one_hot=True)
print('Training data size: ', mnist.train.num_examples)
print('Validation data size: ', mnist.validation.num_examples)
print('Test data size: ', mnist.test.num_examples)
img0 = mnist.train.images[0].reshape(28,28)
img1 = mnist.train.images[1].reshape(28,28)
img2 = mnist.train.images[2].reshape(28,28)
img3 = mnist.train.images[3].reshape(28,28)
fig = plt.figure(figsize=(10,10))
ax0 = fig.add_subplot(221)
ax1 = fig.add_subplot(222)
ax2 = fig.add_subplot(223)
ax3 = fig.add_subplot(224)
ax0.imshow(img0)
ax1.imshow(img1)
ax2.imshow(img2)
ax3.imshow(img3)
fig.show()
画图结果:

总结
以上所述是小编给大家介绍的tensorflow mnist 数据加载实现并画图效果,希望对大家有所帮助!
相关文章
Python 利用scrapy爬虫通过短短50行代码下载整站短视频
近日,有朋友向我求助一件小事儿,他在一个短视频app上看到一个好玩儿的段子,想下载下来,可死活找不到下载的方法。经过我的一番研究才找到解决方法,下面小编给大家分享Python 利用scrapy爬虫通过短短50行代码下载整站短视频的方法,感兴趣的朋友一起看看吧2018-10-10
Python类方法__init__和__del__构造、析构过程分析
这篇文章主要介绍了Python类方法__init__和__del__构造、析构过程分析,本文分析了什么时候构造、什么时候析构、成员变量如何处理、Python中的共享成员函数如何访问等问题,需要的朋友可以参考下2015-03-03
Python中Dataframe元素为不定长list时的拆分分组
本文主要介绍了Python中Dataframe元素为不定长list时的拆分分组,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2023-03-03


最新评论