Python中itertools的用法详解

 更新时间:2020年02月07日 09:36:47   作者:SuPhoebe  
循环器(iterator)是对象的容器,包含有多个对象。这篇文章主要介绍了python itertools用法,需要的朋友可以参考下

iterator

循环器(iterator)是对象的容器,包含有多个对象。通过调用循环器的next()方法 (next()方法,在Python 3.x中),循环器将依次返回一个对象。直到所有的对象遍历穷尽,循环器将举出StopIteration错误。

在for i in iterator结构中,循环器每次返回的对象将赋予给i,直到循环结束。使用iter()内置函数,我们可以将诸如表、字典等容器变为循环器。比如

for i in iter([2, 4, 5, 6]):
 print i

标准库中的itertools包提供了更加灵活的生成循环器的工具。这些工具的输入大都是已有的循环器。另一方面,这些工具完全可以自行使用Python实现,该包只是提供了一种比较标准、高效的实现方式。

# import the tools
from itertools import *

无穷循环器

# 从5开始的整数循环器,每次增加2,即5, 7, 9, 11, 13, 15 ...
count(5, 2)  
# 重复序列的元素,既a, b, c, a, b, c ...
cycle('abc') 
# 重复1.2,构成无穷循环器,即1.2, 1.2, 1.2, ...
repeat(1.2)  
# repeat也可以有一个次数限制:
repeat(10, 5) #重复5次10

函数式工具

函数式编程是将函数本身作为处理对象的编程范式。在Python中,函数也是对象,因此可以轻松的进行一些函数式的处理,比如map(), filter(), reduce()函数。

itertools包含类似的工具。这些函数接收函数作为参数,并将结果返回为一个循环器。

from itertools import *
rlt = imap(pow, [1, 2, 3], [1, 2, 3])
for num in rlt:
 print(num)

上面显示了imap函数。该函数与map()函数功能相似,只不过返回的不是序列,而是一个循环器。包含元素1, 4, 27,即1**1, 2**2, 3**3的结果。函数pow(内置的乘方函数)作为第一个参数。pow()依次作用于后面两个列表的每个元素,并收集函数结果,组成返回的循环器。

此外,还可以用下面的函数:

starmap(pow, [(1, 1), (2, 2), (3, 3)])

pow将依次作用于表的每个tuple。

ifilter函数与filter()函数类似,只是返回的是一个循环器。

ifilter(lambda x: x > 5, [2, 3, 5, 6, 7]

将lambda函数依次作用于每个元素,如果函数返回True,则收集原来的元素:6, 7。

此外,

ifilterfalse(lambda x: x > 5, [2, 3, 5, 6, 7])

与上面类似,但收集返回False的元素:2, 3, 5。

takewhile(lambda x: x < 5, [1, 3, 6, 7, 1])

当函数返回True时,收集元素到循环器。一旦函数返回False,则停止:1, 3。

dropwhile(lambda x: x < 5, [1, 3, 6, 7, 1])

当函数返回False时,跳过元素。一旦函数返回True,则开始收集剩下的所有元素到循环器:6, 7, 1。

组合工具

我们可以通过组合原有循环器,来获得新的循环器。

循环器和笛卡尔乘积

# 连接两个循环器成为一个。1, 2, 3, 4, 5, 7
chain([1, 2, 3], [4, 5, 7]) 
# 多个循环器集合的笛卡尔积,相当于嵌套循环。  
product('abc', [1, 2]) 

样例如下

for m, n in product('abc', [1, 2]):
 print m, n

'''
a 1
a 2
b 1
b 2
c 1
c 2
'''

排列与组合

# 从'abcd'中挑选两个元素,比如ab, bc, ... 将所有结果排序,返回为新的循环器。
permutations('abc', 2) 

注意,上面的组合分顺序,即ab, ba都返回。

# 从'abcd'中挑选两个元素,比如ab, bc, ... 将所有结果排序,返回为新的循环器。
combinations('abc', 2)

注意,上面的组合不分顺序,即ab, ba的话,只返回一个ab。

# 与上面类似,但允许两次选出的元素重复。即多了aa, bb, cc
combinations_with_replacement('abc', 2)

groupby()

将key函数作用于原循环器的各个元素。根据key函数结果,将拥有相同函数结果的元素分到一个新的循环器。每个新的循环器以函数返回结果为标签。

这就好像一群人的身高作为循环器。我们可以使用这样一个key函数: 如果身高大于180,返回”tall”;如果身高底于160,返回”short”;中间的返回”middle”。最终,所有身高将分为三个循环器,即”tall”, “short”, “middle”。

def height_class(h):
 if h > 180:
  return "tall"
 elif h < 160:
  return "short"
 else:
  return "middle"

friends = [191, 158, 159, 165, 170, 177, 181, 182, 190]

friends = sorted(friends, key = height_class)
for m, n in groupby(friends, key = height_class):
 print(m)
 print(list(n))

注意,groupby的功能类似于UNIX中的uniq命令。分组之前需要使用sorted()对原循环器的元素,根据key函数进行排序,让同组元素先在位置上靠拢。

其它工具

# 根据[1, 1, 1, 0]的真假值情况,选择第一个参数'ABCD'中的元素。A, B, C
compress('ABCD', [1, 1, 1, 0]) 
# 类似于slice()函数,只是返回的是一个循环器
islice()      
# 类似于zip()函数,只是返回的是一个循环器
izip()  

总结

以上所述是小编给大家介绍的Python中itertools的用法详解,希望对大家有所帮助!

相关文章

  • 教你使用Pycharm配置远程Jupyter

    教你使用Pycharm配置远程Jupyter

    在pycharm里配置了远程的Python解释器,然后在使用过程中,发现pycharm原来是可以使用Jupyter的文件,而且还可以配置远程的Jupyter环境,今天试了一下,一开始还是走了一些坑,今天梳理一下,需要的朋友可以参考下
    2022-05-05
  • Python计算IV值的示例讲解

    Python计算IV值的示例讲解

    今天小编就为大家分享一篇Python计算IV值的示例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • python实现json转yolo格式

    python实现json转yolo格式

    在目标检测数据集处理中,我们经常会遇到标签之间不同格式的转化,本文主要介绍了python实现json转yolo格式,具有一定的参考价值,感兴趣的可以了解一下
    2023-12-12
  • Python将HTML快速转换成PDF的方法实现

    Python将HTML快速转换成PDF的方法实现

    在Web开发和报告任务中,将HTML内容转换为PDF是一种常见需求,本文主要介绍了Python将HTML快速转换成PDF的方法实现,具有一定的参考价值,感兴趣的可以了解一下
    2024-01-01
  • python hashlib加密实现代码

    python hashlib加密实现代码

    这篇文章主要介绍了python hashlib加密实现代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • 分享Pandas库中的一些宝藏函数transform()

    分享Pandas库中的一些宝藏函数transform()

    Pandas具有很多强大的功能,transform就是其中之一,利用它可以高效地汇总数据且不改变数据行数,transform是一种什么数据操作?如果熟悉SQL的窗口函数,就非常容易理解了
    2021-09-09
  • python实战教程之自动扫雷

    python实战教程之自动扫雷

    用python实现扫雷,非常有意思,这篇文章主要给大家介绍了关于python实现自动扫雷的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-07-07
  • 使用Python分析数据并进行搜索引擎优化的操作步骤

    使用Python分析数据并进行搜索引擎优化的操作步骤

    在互联网时代,网站数据是一种宝贵的资源,可以用来分析用户行为、市场趋势、竞争对手策略等,本文将介绍如何使用Python爬取网站数据,并进行搜索引擎优化,,需要的朋友可以参考下
    2023-08-08
  • Python多线程编程(一):threading模块综述

    Python多线程编程(一):threading模块综述

    这篇文章主要介绍了Python多线程编程(一):threading模块综述,本文讲解了threading模块、Thread类、Queue提供的类等内容,需要的朋友可以参考下
    2015-04-04
  • Python3实现对列表按元组指定列进行排序的方法分析

    Python3实现对列表按元组指定列进行排序的方法分析

    这篇文章主要介绍了Python3实现对列表按元组指定列进行排序的方法,结合实例形式分析了Python3针对列表排序的常见操作技巧与注意事项,需要的朋友可以参考下
    2018-12-12

最新评论