Tensorflow训练模型越来越慢的2种解决方案

 更新时间:2020年02月07日 09:57:20   作者:xdq101  
今天小编就为大家分享一篇Tensorflow训练模型越来越慢的2种解决方案,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

1 解决方案

【方案一】

载入模型结构放在全局,即tensorflow会话外层。

'''载入模型结构:最关键的一步'''
saver = tf.train.Saver()
'''建立会话'''
with tf.Session() as sess:
 for i in range(STEPS):
 '''开始训练'''
 _, loss_1, acc, summary = sess.run([train_op_1, train_loss, train_acc, summary_op], feed_dict=feed_dict)
 '''保存模型'''
 saver.save(sess, save_path="./model/path", i)

【方案二】

在方案一的基础上,将模型结构放在图会话的外部。

'''预测值'''
train_logits= network_model.inference(inputs, keep_prob)
'''损失值'''
train_loss = network_model.losses(train_logits)
'''优化'''
train_op = network_model.train(train_loss, learning_rate)
'''准确率'''
train_acc = network_model.evaluation(train_logits, labels)
'''模型输入'''
feed_dict = {inputs: x_batch, labels: y_batch, keep_prob: 0.5}
'''载入模型结构'''
saver = tf.train.Saver()
'''建立会话'''
with tf.Session() as sess:
 for i in range(STEPS):
 '''开始训练'''
 _, loss_1, acc, summary = sess.run([train_op_1, train_loss, train_acc, summary_op], feed_dict=feed_dict)
 '''保存模型'''
 saver.save(sess, save_path="./model/path", i) 

2 时间测试

通过不同方法测试训练程序,得到不同的训练时间,每执行一次训练都重新载入图结构,会使每一步的训练时间逐次增加,如果训练步数越大,后面训练速度越来越慢,最终可导致图爆炸,而终止训练。

【时间累加】

2019-05-15 10:55:29.009205: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
step: 0, time cost: 1.8800880908966064
step: 1, time cost: 1.592250108718872
step: 2, time cost: 1.553826093673706
step: 3, time cost: 1.5687050819396973
step: 4, time cost: 1.5777575969696045
step: 5, time cost: 1.5908267498016357
step: 6, time cost: 1.5989274978637695
step: 7, time cost: 1.6078357696533203
step: 8, time cost: 1.6087186336517334
step: 9, time cost: 1.6123006343841553
step: 10, time cost: 1.6320762634277344
step: 11, time cost: 1.6317598819732666
step: 12, time cost: 1.6570467948913574
step: 13, time cost: 1.6584930419921875
step: 14, time cost: 1.6765813827514648
step: 15, time cost: 1.6751370429992676
step: 16, time cost: 1.7304580211639404
step: 17, time cost: 1.7583982944488525

【时间均衡】

2019-05-15 13:03:49.394354: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:1 with 7048 MB memory) -> physical GPU (device: 1, name: Tesla P4, pci bus id: 0000:00:0d.0, compute capability: 6.1)
step: 0, time cost: 1.9781079292297363
loss1:6.78, loss2:5.47, loss3:5.27, loss4:7.31, loss5:5.44, loss6:6.87, loss7: 6.84
Total loss: 43.98, accuracy: 0.04, steps: 0, time cost: 1.9781079292297363
step: 1, time cost: 0.09688425064086914
step: 2, time cost: 0.09693264961242676
step: 3, time cost: 0.09671926498413086
step: 4, time cost: 0.09688210487365723
step: 5, time cost: 0.09646058082580566
step: 6, time cost: 0.09669041633605957
step: 7, time cost: 0.09666872024536133
step: 8, time cost: 0.09651994705200195
step: 9, time cost: 0.09705543518066406
step: 10, time cost: 0.09690332412719727

3 原因分析

(1) Tensorflow使用图结构构建系统,图结构中有节点(node)和边(operation),每次进行计算时会向图中添加边和节点进行计算或者读取已存在的图结构;

(2) 使用图结构也是一把双刃之剑,可以加快计算和提高设计效率,但是,程序设计不合理会导向负面,使训练越来约慢;

(3) 训练越来越慢是因为运行一次sess.run,向图中添加一次节点或者重新载入一次图结构,导致图中节点和边越来越多,计算参数也成倍增长;

(4) tf.train.Saver()就是载入图结构的类,因此设计训练程序时,若每执行一次跟新就使用该类载入图结构,自然会增加参数数量,必然导致训练变慢;

(5) 因此,将载入图结构的类放在全局,即只载入一次图结构,其他时间只训练图结构中的参数,可保持原有的训练速度;

4 总结

(1) 设计训练网络,只载入一次图结构即可;

(2) tf.train.Saver()就是载入图结构的类,将该类的实例化放在全局,即会话外部,解决训练越来越慢。

以上这篇Tensorflow训练模型越来越慢的2种解决方案就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 关于python如何生成exe文件

    关于python如何生成exe文件

    这篇文章主要介绍了关于python如何生成exe文件,exe全称“executable”,中文意思为“可执行的”,是一种文件格式,是指一种可在操作系统存储空间中浮动定位的可执行程序,需要的朋友可以参考下
    2023-04-04
  • 深入了解和应用Python 装饰器 @decorator

    深入了解和应用Python 装饰器 @decorator

    在编程过程中,经常遇到这样的场景:登录校验,权限校验,日志记录等,这些功能代码在各个环节都可能需要,但又十分雷同,通过装饰器来抽象、剥离这部分代码可以很好解决这类场景,这篇文章主要介绍了Python的装饰器 @decorator,探讨了使用的方式,需要的朋友可以参考下
    2019-04-04
  • Python 如何将integer转化为罗马数(3999以内)

    Python 如何将integer转化为罗马数(3999以内)

    这篇文章主要介绍了Python 将integer转化为罗马数(3999以内)的操作,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2021-06-06
  • Python中的浮点数原理与运算分析

    Python中的浮点数原理与运算分析

    这篇文章主要介绍了Python中的浮点数原理与运算分析,结合实例形式分析了Python浮点数操作的常见错误,并简单解释了浮点数运算的原理与比较运算实现方法,需要的朋友可以参考下
    2017-10-10
  • python GUI库图形界面开发之PyQt5工具栏控件QToolBar的详细使用方法与实例

    python GUI库图形界面开发之PyQt5工具栏控件QToolBar的详细使用方法与实例

    这篇文章主要介绍了python GUI库图形界面开发之PyQt5工具栏控件QToolBar的详细使用方法与实例,需要的朋友可以参考下
    2020-02-02
  • pandas读取csv文件,分隔符参数sep的实例

    pandas读取csv文件,分隔符参数sep的实例

    今天小编就为大家分享一篇pandas读取csv文件,分隔符参数sep的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • python实现扑克牌交互式界面发牌程序

    python实现扑克牌交互式界面发牌程序

    这篇文章主要介绍了python实现扑克牌交互式界面发牌程序,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-04-04
  • 基于python-pptx库中文文档及使用详解

    基于python-pptx库中文文档及使用详解

    今天小编就为大家分享一篇基于python-pptx库中文文档及使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • python imutils包基本概念及使用

    python imutils包基本概念及使用

    python imutils包可以很简洁的调用opencv接口,轻松实现图像的平移,旋转,缩放,骨架化等操作,对python imutils包基本概念及使用方法感兴趣的朋友一起看看吧
    2021-07-07
  • Python面向对象编程中关于类和方法的学习笔记

    Python面向对象编程中关于类和方法的学习笔记

    类与类方法是面向对象的编程语言中必不可少的特性,本文总结了Python面向对象编程中关于类和方法的学习笔记,需要的朋友可以参考下
    2016-06-06

最新评论