tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度方式
在利用tensorflow进行文本挖掘工作的时候,经常涉及到维度扩展和压缩工作。比如对文本进行embedding操作完成之后,若要进行卷积操作,就需要对embedded的向量扩展维度,将[batch_size, embedding_dims]扩展成为[batch_size, embedding_dims, 1],利用tf.expand_dims(input, -1)就可实现,反过来用squeeze(input, -1)或者tf.squeeze(input)也可以把最第三维去掉。
tf.expand_dims()
tf.squeeze()
tf.expand_dims()
tf.expand_dims(input, axis=None, name=None, dim=None)
在第axis位置增加一个维度.
给定张量输入,此操作在输入形状的维度索引轴处插入1的尺寸。 尺寸索引轴从零开始; 如果您指定轴的负数,则从最后向后计数。
如果要将批量维度添加到单个元素,则此操作非常有用。 例如,如果您有一个单一的形状[height,width,channels],您可以使用expand_dims(image,0)使其成为1个图像,这将使形状[1,高度,宽度,通道]。
例子
# 't' is a tensor of shape [2] shape(expand_dims(t, 0)) ==> [1, 2] shape(expand_dims(t, 1)) ==> [2, 1] shape(expand_dims(t, -1)) ==> [2, 1] # 't2' is a tensor of shape [2, 3, 5] shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5] shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5] shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
tf.squeeze()
tf.squeeze(input, axis=None, name=None, squeeze_dims=None)
直接上例子
# 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t)) ==> [2, 3] # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
以上这篇tensorflow 利用expand_dims和squeeze扩展和压缩tensor维度方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
python利用openpyxl拆分多个工作表的工作簿的方法
这篇文章主要介绍了python利用openpyxl拆分多个工作表的工作簿的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧2019-09-09
在python中利用pycharm自定义代码块教程(三步搞定)
这篇文章主要介绍了在python中利用pycharm自定义代码块教程(三步搞定),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧2020-04-04
python使用selenium登录QQ邮箱(附带滑动解锁)
这篇文章主要为大家详细介绍了python使用selenium登录QQ邮箱,带滑动解锁登录功能,具有一定的参考价值,感兴趣的小伙伴们可以参考一下2019-01-01


最新评论