python加密解密库cryptography使用openSSL生成的密匙加密解密

 更新时间:2020年02月11日 08:58:15   作者:xiaoqingyu123  
这篇文章主要介绍了python加密解密库cryptography使用openSSL生成的密匙加密解密,需要的朋友可以参考下

密匙使用步骤一般是:

    1. 私匙签名,发送签名后的数据, 公匙验证。

    2.公匙加密,发送加密后的数据,私匙解密。

一般使用情景是通过 openssl 生成密匙后再操作的。Linux下生成密匙也很简单。

yum 安装 openssl

yum -y install openssl

生成三个密匙文件。

rsa_private_key.pem 私匙文件

rsa_private_key_pkcs8.pem  pkcs8格式私匙, 

rsa_public_key.pem 公匙

openssl genrsa -out rsa_private_key.pem  1024 

openssl pkcs8 -topk8 -inform PEM -in rsa_private_key.pem -outform PEM -nocrypt -out rsa_private_key_pkcs8.pem 

openssl rsa -in rsa_private_key.pem -pubout -out rsa_public_key.pem 

导入私匙:

序列化密钥可以选择使用密码在磁盘上进行加密。在这个例子中,我们加载了一个未加密的密钥,因此我们没有提供密码。如果密钥被加密,我们可以传递一个bytes对象作为 password参数。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
 
# 已有sar私匙, 导入
with open('Key.pem', 'rb') as key_file:
  private_key = serialization.load_pem_private_key(
    key_file.read(),
    password=None,
    backend=default_backend()
  )

签名:

私钥可用于签署消息。这允许任何拥有公钥的人验证该消息是由拥有相应私钥的人创建的。RSA签名需要特定的散列函数,并使用填充。以下是message使用RSA 进行签名的示例,带有安全散列函数和填充:

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
 
# 已有sar私匙, 导入
with open('Key.pem', 'rb') as key_file:
  private_key = serialization.load_pem_private_key(
    key_file.read(),
    password=None,
    backend=default_backend()
  )
 
message = b"aaaa, bbbb, cccc"
 
# 签名操作
signature = private_key.sign(
  message,
  padding.PSS(
    mgf=padding.MGF1(hashes.SHA256()),
    salt_length=padding.PSS.MAX_LENGTH
  ),
  hashes.SHA256()
)
print('签名后数据: ', signature)

有效的签名填充是 PSS和 PKCS1v15.PSS 是任何新协议或应用的推荐选择,PKCS1v15 只应用于支持传统协议。

如果您的数据太大而无法在单个调用中传递,则可以分别对其进行散列并使用该值 Prehashed。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives.asymmetric import utils
 
# 已有sar私匙, 导入
with open('Key.pem', 'rb') as key_file:
  private_key = serialization.load_pem_private_key(
    key_file.read(),
    password=None,
    backend=default_backend()
  )
 
# 如果您的数据太大而无法在单个调用中传递,则可以分别对其进行散列并使用该值 Prehashed。
 
 
chosen_hash = hashes.SHA256()
hasher = hashes.Hash(chosen_hash, default_backend())
hasher.update(b"data &")
hasher.update(b"more data")
digest = hasher.finalize()
sig = private_key.sign(
  digest,
  padding.PSS(
    mgf=padding.MGF1(hashes.SHA256()),
    salt_length=padding.PSS.MAX_LENGTH
  ),
  utils.Prehashed(chosen_hash)
)
print('签名后数据: ', sig)

验证:

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
 
# 已有sar私匙, 导入
with open('Key.pem', 'rb') as key_file:
  private_key = serialization.load_pem_private_key(
    key_file.read(),
    password=None,
    backend=default_backend()
  )
 
message = b"123 xiao"
 
# 签名
signature = private_key.sign(
  # 原始数据
  message,
  padding.PSS(
    mgf=padding.MGF1(hashes.SHA256()),
    salt_length=padding.PSS.MAX_LENGTH
  ),
  hashes.SHA256()
)
print('签名后的数据: ', signature)
 
 
# 公匙导入
with open('Key_pub.pem', 'rb') as key_file:
  public_key = serialization.load_pem_public_key(
    key_file.read(),
    backend=default_backend()
  )
  
  
# 签名数据与原始数据不对,抛出异常
# 如果验证不匹配,verify()会引发 InvalidSignature异常。
public_key.verify(
  # 签名数据
  signature,
  # 原始数据
  message,
  padding.PSS(
    mgf=padding.MGF1(hashes.SHA256()),
    salt_length=padding.PSS.MAX_LENGTH
  ),
  hashes.SHA256()
)

如果您的数据太大而无法在单个调用中传递,则可以分别对其进行散列并使用该值 Prehashed。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
from cryptography.hazmat.primitives.asymmetric import utils
 
# 已有sar私匙, 导入
with open('Key.pem', 'rb') as key_file:
  private_key = serialization.load_pem_private_key(
    key_file.read(),
    password=None,
    backend=default_backend()
  )
 
chosen_hash = hashes.SHA256()
hasher = hashes.Hash(chosen_hash, default_backend())
hasher.update(b'data &')
hasher.update(b'more data')
digest = hasher.finalize()
sig = private_key.sign(
  digest,
  padding.PSS(
    mgf=padding.MGF1(hashes.SHA256()),
    salt_length=padding.PSS.MAX_LENGTH
  ),
  utils.Prehashed(chosen_hash)
)
print('签名后的数据: ', sig)
 
 
# 公匙导入
with open('Key_pub.pem', 'rb') as key_file:
  public_key = serialization.load_pem_public_key(
    key_file.read(),
    backend=default_backend()
  )
 
 
# 如果您的数据太大而无法在单个调用中传递,则可以分别对其进行散列并使用该值 Prehashed。
public_key.verify(
  sig,
  digest,
  padding.PSS(
    mgf=padding.MGF1(hashes.SHA256()),
    salt_length=padding.PSS.MAX_LENGTH
  ),
  utils.Prehashed(chosen_hash)
)

公匙,加密:

因为是使用进行加密的RSA加密有趣的是 公共密钥,这意味着任何人都可以对数据进行加密。数据然后使用私钥解密。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
 
 
# 公匙导入
with open('Key_pub.pem', 'rb') as key_file:
  public_key = serialization.load_pem_public_key(
    key_file.read(),
    backend=default_backend()
  )
 
 
message = b'test data'
ciphertext = public_key.encrypt(
  message,
  padding.OAEP(
    mgf=padding.MGF1(algorithm=hashes.SHA256()),
    algorithm=hashes.SHA256(),
    label=None
  )
)
print('加密数据: ', ciphertext)

私匙解密公私加密的信息:

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
 
 
# 已有sar私匙, 导入
with open('Key.pem', 'rb') as key_file:
  private_key = serialization.load_pem_private_key(
    key_file.read(),
    password=None,
    backend=default_backend()
  )
  
 
plaintext = private_key.decrypt(
  # 加密的信息
  ciphertext,
  padding.OAEP(
    mgf=padding.MGF1(algorithm=hashes.SHA256()),
    algorithm=hashes.SHA256(),
    label=None
  )
)
 
print('解密数据: ', plaintext)

完整的公匙加密,私匙解密获取信息。

from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import serialization
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.asymmetric import padding
 
 
# 公匙导入
with open('Key_pub.pem', 'rb') as key_file:
  public_key = serialization.load_pem_public_key(
    key_file.read(),
    backend=default_backend()
  )
 
 
message = b'test data'
ciphertext = public_key.encrypt(
  message,
  padding.OAEP(
    mgf=padding.MGF1(algorithm=hashes.SHA256()),
    algorithm=hashes.SHA256(),
    label=None
  )
)
print('加密数据: ', ciphertext)
 
 
# 已有sar私匙, 导入
with open('Key.pem', 'rb') as key_file:
  private_key = serialization.load_pem_private_key(
    key_file.read(),
    password=None,
    backend=default_backend()
  )
  
 
plaintext = private_key.decrypt(
  # 加密的信息
  ciphertext,
  padding.OAEP(
    mgf=padding.MGF1(algorithm=hashes.SHA256()),
    algorithm=hashes.SHA256(),
    label=None
  )
)
 
print('解密数据: ', plaintext)

更多关于python加密解密库cryptography的使用方法请查看下面的相关链接

相关文章

  • Python批量删除只保留最近几天table的代码实例

    Python批量删除只保留最近几天table的代码实例

    今天小编就为大家分享一篇关于Python批量删除只保留最近几天table的代码实例,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-04-04
  • 深入讨论Python函数的参数的默认值所引发的问题的原因

    深入讨论Python函数的参数的默认值所引发的问题的原因

    这篇文章主要介绍了深入讨论Python函数的参数的默认值所引发的问题的原因,利用了Python解释器在内存地址分配中的过程解释了参数默认值带来陷阱的原因,需要的朋友可以参考下
    2015-03-03
  • Python将xml和xsl转换为html的方法

    Python将xml和xsl转换为html的方法

    这篇文章主要介绍了Python将xml和xsl转换为html的方法,实例分析了使用libxml2模块操作xml和xsl转换为html的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • 利用OpenCV给彩色图像添加椒盐噪声的方法

    利用OpenCV给彩色图像添加椒盐噪声的方法

    椒盐噪声是数字图像中的常见噪声,一般是图像传感器、传输信道及解码处理等产生的黑白相间的亮暗点噪声,椒盐噪声常由图像切割产生,这篇文章主要给大家介绍了关于利用OpenCV给彩色图像添加椒盐噪声的相关资料,需要的朋友可以参考下
    2021-10-10
  • python中lambda与def用法对比实例分析

    python中lambda与def用法对比实例分析

    这篇文章主要介绍了python中lambda与def用法对比,实例分析了lambda与def的区别与使用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-04-04
  • Python中的with关键字和文件操作方法

    Python中的with关键字和文件操作方法

    在Python编程中,with关键字用于简化文件操作流程,包括文件的打开、读取、写入和关闭,它是一个上下文管理器,确保即使在发生异常的情况下,文件也能被正确关闭,释放系统资源,本文给大家介绍Python中的with关键字和文件操作方法,感兴趣的朋友一起看看吧
    2024-10-10
  • pyodps中的apply用法及groupby取分组排序第一条数据

    pyodps中的apply用法及groupby取分组排序第一条数据

    这篇文章主要介绍了pyodps中的apply用法及groupby取分组排序第一条数据,问绽放围绕主题展开详细的内容介绍,具有一定的参考价值需要的小伙伴可以参考一下
    2022-05-05
  • Pandas+openpyxl进行Excel处理详解

    Pandas+openpyxl进行Excel处理详解

    这篇文章主要为大家详细介绍了如何使用pandas和openpyxl库对多个Excel文件进行多种处理的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下
    2025-02-02
  • python求numpy中array按列非零元素的平均值案例

    python求numpy中array按列非零元素的平均值案例

    这篇文章主要介绍了python求numpy中array按列非零元素的平均值案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python多进程并发与同步机制超详细讲解

    Python多进程并发与同步机制超详细讲解

    进程(Process),顾名思义,就是进行中的程序。有一句话说得好:程序是一个没有生命的实体,只有处理器赋予程序生命时,它才能成为一个活动的实体。进程是资源分配的最小单元,也就是说每个进程都有其单独的内存空间
    2022-12-12

最新评论