Tensorflow训练MNIST手写数字识别模型

 更新时间:2020年02月13日 11:10:46   作者:Sebastien23  
这篇文章主要为大家详细介绍了Tensorflow训练MNIST手写数字识别模型,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了Tensorflow训练MNIST手写数字识别模型的具体代码,供大家参考,具体内容如下

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
 
INPUT_NODE = 784  # 输入层节点=图片像素=28x28=784
OUTPUT_NODE = 10  # 输出层节点数=图片类别数目
 
LAYER1_NODE = 500  # 隐藏层节点数,只有一个隐藏层
BATCH_SIZE = 100  # 一个训练包中的数据个数,数字越小
          # 越接近随机梯度下降,越大越接近梯度下降
 
LEARNING_RATE_BASE = 0.8   # 基础学习率
LEARNING_RATE_DECAY = 0.99  # 学习率衰减率
 
REGULARIZATION_RATE = 0.0001  # 正则化项系数
TRAINING_STEPS = 30000     # 训练轮数
MOVING_AVG_DECAY = 0.99    # 滑动平均衰减率
 
# 定义一个辅助函数,给定神经网络的输入和所有参数,计算神经网络的前向传播结果
def inference(input_tensor, avg_class, weights1, biases1,
       weights2, biases2):
 
 # 当没有提供滑动平均类时,直接使用参数当前取值
 if avg_class == None:
  # 计算隐藏层前向传播结果
  layer1 = tf.nn.relu(tf.matmul(input_tensor, weights1) + biases1)
  # 计算输出层前向传播结果
  return tf.matmul(layer1, weights2) + biases2
 else:
  # 首先计算变量的滑动平均值,然后计算前向传播结果
  layer1 = tf.nn.relu(
    tf.matmul(input_tensor, avg_class.average(weights1)) +
    avg_class.average(biases1))
  
  return tf.matmul(
    layer1, avg_class.average(weights2)) + avg_class.average(biases2)
 
# 训练模型的过程
def train(mnist):
 x = tf.placeholder(tf.float32, [None, INPUT_NODE], name='x-input')
 y_ = tf.placeholder(tf.float32, [None, OUTPUT_NODE], name='y-input')
 
 # 生成隐藏层参数
 weights1 = tf.Variable(
   tf.truncated_normal([INPUT_NODE, LAYER1_NODE], stddev=0.1))
 biases1 = tf.Variable(tf.constant(0.1, shape=[LAYER1_NODE]))
 
 # 生成输出层参数
 weights2 = tf.Variable(
   tf.truncated_normal([LAYER1_NODE, OUTPUT_NODE], stddev=0.1))
 biases2 = tf.Variable(tf.constant(0.1, shape=[OUTPUT_NODE]))
 
 # 计算前向传播结果,不使用参数滑动平均值 avg_class=None
 y = inference(x, None, weights1, biases1, weights2, biases2)
 
 # 定义训练轮数变量,指定为不可训练
 global_step = tf.Variable(0, trainable=False)
 
 # 给定滑动平均衰减率和训练轮数的变量,初始化滑动平均类
 variable_avgs = tf.train.ExponentialMovingAverage(
   MOVING_AVG_DECAY, global_step)
 
 # 在所有代表神经网络参数的可训练变量上使用滑动平均
 variables_avgs_op = variable_avgs.apply(tf.trainable_variables())
 
 # 计算使用滑动平均值后的前向传播结果
 avg_y = inference(x, variable_avgs, weights1, biases1, weights2, biases2)
 
 # 计算交叉熵作为损失函数
 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
   logits=y, labels=tf.argmax(y_, 1))
 cross_entropy_mean = tf.reduce_mean(cross_entropy)
 
 # 计算L2正则化损失函数
 regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
 regularization = regularizer(weights1) + regularizer(weights2)
 
 loss = cross_entropy_mean + regularization
 
 # 设置指数衰减的学习率
 learning_rate = tf.train.exponential_decay(
   LEARNING_RATE_BASE,
   global_step,              # 当前迭代轮数
   mnist.train.num_examples / BATCH_SIZE, # 过完所有训练数据的迭代次数
   LEARNING_RATE_DECAY)
 
 
 # 优化损失函数
 train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(
   loss, global_step=global_step)
 
 # 反向传播同时更新神经网络参数及其滑动平均值
 with tf.control_dependencies([train_step, variables_avgs_op]):
  train_op = tf.no_op(name='train')
 
 # 检验使用了滑动平均模型的神经网络前向传播结果是否正确
 correct_prediction = tf.equal(tf.argmax(avg_y, 1), tf.argmax(y_, 1))
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
 
 
 # 初始化会话并开始训练
 with tf.Session() as sess:
  tf.global_variables_initializer().run()
  
  # 准备验证数据,用于判断停止条件和训练效果
  validate_feed = {x: mnist.validation.images,
          y_: mnist.validation.labels}
  
  # 准备测试数据,用于模型优劣的最后评价标准
  test_feed = {x: mnist.test.images, y_: mnist.test.labels}
  
  # 迭代训练神经网络
  for i in range(TRAINING_STEPS):
   if i%1000 == 0:
    validate_acc = sess.run(accuracy, feed_dict=validate_feed)
    print("After %d training step(s), validation accuracy using average " 
       "model is %g " % (i, validate_acc))
    
   xs, ys = mnist.train.next_batch(BATCH_SIZE)
   sess.run(train_op, feed_dict={x: xs, y_: ys})
  
  # 训练结束后在测试集上检测模型的最终正确率
  test_acc = sess.run(accuracy, feed_dict=test_feed)
  print("After %d training steps, test accuracy using average model "
     "is %g " % (TRAINING_STEPS, test_acc))
  
  
# 主程序入口
def main(argv=None):
 mnist = input_data.read_data_sets("/tmp/data", one_hot=True)
 train(mnist)
 
# Tensorflow主程序入口
if __name__ == '__main__':
 tf.app.run()

输出结果如下:

Extracting /tmp/data/train-images-idx3-ubyte.gz
Extracting /tmp/data/train-labels-idx1-ubyte.gz
Extracting /tmp/data/t10k-images-idx3-ubyte.gz
Extracting /tmp/data/t10k-labels-idx1-ubyte.gz
After 0 training step(s), validation accuracy using average model is 0.0462 
After 1000 training step(s), validation accuracy using average model is 0.9784 
After 2000 training step(s), validation accuracy using average model is 0.9806 
After 3000 training step(s), validation accuracy using average model is 0.9798 
After 4000 training step(s), validation accuracy using average model is 0.9814 
After 5000 training step(s), validation accuracy using average model is 0.9826 
After 6000 training step(s), validation accuracy using average model is 0.9828 
After 7000 training step(s), validation accuracy using average model is 0.9832 
After 8000 training step(s), validation accuracy using average model is 0.9838 
After 9000 training step(s), validation accuracy using average model is 0.983 
After 10000 training step(s), validation accuracy using average model is 0.9836 
After 11000 training step(s), validation accuracy using average model is 0.9822 
After 12000 training step(s), validation accuracy using average model is 0.983 
After 13000 training step(s), validation accuracy using average model is 0.983 
After 14000 training step(s), validation accuracy using average model is 0.9844 
After 15000 training step(s), validation accuracy using average model is 0.9832 
After 16000 training step(s), validation accuracy using average model is 0.9844 
After 17000 training step(s), validation accuracy using average model is 0.9842 
After 18000 training step(s), validation accuracy using average model is 0.9842 
After 19000 training step(s), validation accuracy using average model is 0.9838 
After 20000 training step(s), validation accuracy using average model is 0.9834 
After 21000 training step(s), validation accuracy using average model is 0.9828 
After 22000 training step(s), validation accuracy using average model is 0.9834 
After 23000 training step(s), validation accuracy using average model is 0.9844 
After 24000 training step(s), validation accuracy using average model is 0.9838 
After 25000 training step(s), validation accuracy using average model is 0.9834 
After 26000 training step(s), validation accuracy using average model is 0.984 
After 27000 training step(s), validation accuracy using average model is 0.984 
After 28000 training step(s), validation accuracy using average model is 0.9836 
After 29000 training step(s), validation accuracy using average model is 0.9842 
After 30000 training steps, test accuracy using average model is 0.9839

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python面向对象_详谈类的继承与方法的重载

    python面向对象_详谈类的继承与方法的重载

    下面小编就为大家带来一篇python面向对象_详谈类的继承与方法的重载。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-06-06
  • 深入解读Python解析XML的几种方式

    深入解读Python解析XML的几种方式

    这篇文章主要为大家详细介绍了深入解读Python解析XML的几种方式,以ElementTree模块为例,演示具体使用方法和场景,感兴趣的小伙伴们可以参考一下
    2016-02-02
  • Python ttkbootstrap 制作账户注册信息界面的案例代码

    Python ttkbootstrap 制作账户注册信息界面的案例代码

    ttkbootstrap 是一个基于 tkinter 的界面美化库,使用这个工具可以开发出类似前端 bootstrap 风格的 tkinter 桌面程序。本文重点给大家介绍Python ttkbootstrap 制作账户注册信息界面的案例代码,感兴趣的朋友一起看看吧
    2022-02-02
  • python利用json和pyecharts画折线图实例代码

    python利用json和pyecharts画折线图实例代码

    这篇文章主要介绍了python利用json和pyecharts画折线图实例,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-12-12
  • Python __slots__的使用方法

    Python __slots__的使用方法

    这篇文章主要介绍了Python __slots__的使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • Python实现动态条形图绘制的示例代码

    Python实现动态条形图绘制的示例代码

    这篇文章主要为大家详细介绍了如何利用Python语言实现动态条形图的绘制,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2022-08-08
  • python+opencv+selenium自动化登录邮箱并解决滑动验证的问题

    python+opencv+selenium自动化登录邮箱并解决滑动验证的问题

    本文主要讲解基于python+opencv+selenium自动化登录邮箱并解决滑动验证的问题,在这大家需要注意页面元素定位及文本框和验证码的frame嵌套问题,感兴趣的朋友一起看看吧
    2021-07-07
  • Flask使用SQLAlchemy实现持久化数据

    Flask使用SQLAlchemy实现持久化数据

    本文主要介绍了Flask使用SQLAlchemy实现持久化数据,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧
    2021-07-07
  • python中torch.load中的map_location参数使用

    python中torch.load中的map_location参数使用

    在PyTorch中,torch.load()函数是用于加载保存模型或张量数据的重要工具,map_location参数为我们提供了极大的灵活性,具有一定的参考价值,感兴趣的可以了解一下
    2024-03-03
  • 利用Python实现读取Word表格计算汇总并写入Excel

    利用Python实现读取Word表格计算汇总并写入Excel

    这篇文章主要给大家介绍了关于如何利用Python实现读取Word表格计算汇总并写入Excel的相关资料,文中通过实例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2022-01-01

最新评论