pytorch 模型的train模式与eval模式实例
更新时间:2020年02月20日 16:14:57 作者:rasekk
今天小编就为大家分享一篇pytorch 模型的train模式与eval模式实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
原因
对于一些含有batch normalization或者是Dropout层的模型来说,训练时的froward和验证时的forward有计算上是不同的,因此在前向传递过程中需要指定模型是在训练还是在验证。
源代码
[docs] def train(self, mode=True): r"""Sets the module in training mode. This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, etc. Returns: Module: self """ self.training = mode for module in self.children(): module.train(mode) return self [docs] def eval(self): r"""Sets the module in evaluation mode. This has any effect only on certain modules. See documentations of particular modules for details of their behaviors in training/evaluation mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, etc. """ #该方法调用了nn.train()方法,把参数默认值改为false. 增加聚合性 return self.train(False)
在使用含有BN层,dropout层的神经网路来说,必须要区分训练和验证
以上这篇pytorch 模型的train模式与eval模式实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。
相关文章
python利用re,bs4,requests模块获取股票数据
这篇文章主要介绍了python利用re,bs4,requests模块获取股票数据,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下2019-07-07
python处理自动化任务之同时批量修改word里面的内容的方法
在本篇文章里小编给各位整理的是一篇关于利用python处理自动化任务之同时批量修改word里面的内容的文章,需要的可以参考学习下。2019-08-08


最新评论