python如何将两张图片生成为全景图片

 更新时间:2020年03月05日 09:19:14   作者:无落  
这篇文章主要为大家详细介绍了python如何将两张图片生成为全景图片,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下

本文实例为大家分享了python将两张图片生成全景图片的具体代码,供大家参考,具体内容如下

1、全景图片的介绍

全景图通过广角的表现手段以及绘画、相片、视频、三维模型等形式,尽可能多表现出周围的环境。360全景,即通过对专业相机捕捉整个场景的图像信息或者使用建模软件渲染过后的图片,使用软件进行图片拼合,并用专门的播放器进行播放,即将平面照片或者计算机建模图片变为360 度全观,用于虚拟现实浏览,把二维的平面图模拟成真实的三维空间,呈现给观赏者。

2、如何实现

2.1、实现原理

主要是利用sift的特征提取与匹配,参考链接

2.2、实现代码

# -*- coding:utf-8 -*-
u'''
Created on 2019年6月14日
@author: wuluo
'''
__author__ = 'wuluo'
__version__ = '1.0.0'
__company__ = u'重庆交大'
__updated__ = '2019-06-14'
import numpy as np
import cv2 as cv
from PIL import Image
from matplotlib import pyplot as plt
print('cv version: ', cv.__version__)

def pinjie():
 top, bot, left, right = 100, 100, 0, 500
 img1 = cv.imread('G:/2018and2019two/qianrushi/wuluo1.png')
 cv.imshow("img1", img1)
 img2 = cv.imread('G:/2018and2019two/qianrushi/wuluo2.png')
 cv.imshow("img2", img2)
 srcImg = cv.copyMakeBorder(
  img1, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
 testImg = cv.copyMakeBorder(
  img2, top, bot, left, right, cv.BORDER_CONSTANT, value=(0, 0, 0))
 img1gray = cv.cvtColor(srcImg, cv.COLOR_BGR2GRAY)
 img2gray = cv.cvtColor(testImg, cv.COLOR_BGR2GRAY)
 sift = cv.xfeatures2d_SIFT().create()
 # find the keypoints and descriptors with SIFT
 kp1, des1 = sift.detectAndCompute(img1gray, None)
 kp2, des2 = sift.detectAndCompute(img2gray, None)
 # FLANN parameters
 FLANN_INDEX_KDTREE = 1
 index_params = dict(algorithm=FLANN_INDEX_KDTREE, trees=5)
 search_params = dict(checks=50)
 flann = cv.FlannBasedMatcher(index_params, search_params)
 matches = flann.knnMatch(des1, des2, k=2)
 
 # Need to draw only good matches, so create a mask
 matchesMask = [[0, 0] for i in range(len(matches))]

 good = []
 pts1 = []
 pts2 = []
 # ratio test as per Lowe's paper
 for i, (m, n) in enumerate(matches):
  if m.distance < 0.7 * n.distance:
   good.append(m)
   pts2.append(kp2[m.trainIdx].pt)
   pts1.append(kp1[m.queryIdx].pt)
   matchesMask[i] = [1, 0]

 draw_params = dict(matchColor=(0, 255, 0),
      singlePointColor=(255, 0, 0),
      matchesMask=matchesMask,
      flags=0)
 img3 = cv.drawMatchesKnn(img1gray, kp1, img2gray,
        kp2, matches, None, **draw_params)
 #plt.imshow(img3, ), plt.show()

 rows, cols = srcImg.shape[:2]
 MIN_MATCH_COUNT = 10
 if len(good) > MIN_MATCH_COUNT:
  src_pts = np.float32(
   [kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)
  dst_pts = np.float32(
   [kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)
  M, mask = cv.findHomography(src_pts, dst_pts, cv.RANSAC, 5.0)
  warpImg = cv.warpPerspective(testImg, np.array(
   M), (testImg.shape[1], testImg.shape[0]), flags=cv.WARP_INVERSE_MAP)

  for col in range(0, cols):
   if srcImg[:, col].any() and warpImg[:, col].any():
    left = col
    break
  for col in range(cols - 1, 0, -1):
   if srcImg[:, col].any() and warpImg[:, col].any():
    right = col
    break

  res = np.zeros([rows, cols, 3], np.uint8)
  for row in range(0, rows):
   for col in range(0, cols):
    if not srcImg[row, col].any():
     res[row, col] = warpImg[row, col]
    elif not warpImg[row, col].any():
     res[row, col] = srcImg[row, col]
    else:
     srcImgLen = float(abs(col - left))
     testImgLen = float(abs(col - right))
     alpha = srcImgLen / (srcImgLen + testImgLen)
     res[row, col] = np.clip(
      srcImg[row, col] * (1 - alpha) + warpImg[row, col] * alpha, 0, 255)

  # opencv is bgr, matplotlib is rgb
  res = cv.cvtColor(res, cv.COLOR_BGR2RGB)
  # show the result
  plt.figure()
  plt.imshow(res)
  plt.show()
 else:
  print("Not enough matches are found - {}/{}".format(len(good), MIN_MATCH_COUNT))
  matchesMask = None

if __name__ == "__main__":
 pinjie()

3、运行效果

原始的两张图:

效果图:

原始图,水杯没有处理好,导致此处效果不好。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • Python hashlib模块加密过程解析

    Python hashlib模块加密过程解析

    这篇文章主要介绍了Python hashlib模块加密过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-11-11
  • python3调用windows dos命令的例子

    python3调用windows dos命令的例子

    今天小编就为大家分享一篇python3调用windows dos命令的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • Python Tkinter Entry和Text的添加与使用详解

    Python Tkinter Entry和Text的添加与使用详解

    这篇文章主要介绍了Python Tkinter Entry和Text的添加与使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • python动态进度条的实现代码

    python动态进度条的实现代码

    有时候我们需要使用print打印工作进度,正常使用print函数会导致刷屏的现象,本文通过实例代码给大家介绍python动态进度条的实现方法,感兴趣的朋友跟随小编一起看看吧
    2019-07-07
  • Python解析压缩包内部文件的后缀名并分类存放

    Python解析压缩包内部文件的后缀名并分类存放

    这篇文章主要为大家详细介绍了如何使用Python解析压缩包内部文件的后缀名并分类存放,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
    2024-12-12
  • python实现对AES加密的视频数据流解密的方法

    python实现对AES加密的视频数据流解密的方法

    密码学中的高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,这篇文章主要介绍了用python实现对AES加密的视频数据流解密,需要的朋友可以参考下
    2023-02-02
  • pandas按某2列进行分层随机抽样的实现

    pandas按某2列进行分层随机抽样的实现

    本文主要介绍了pandas按某2列进行分层随机抽样的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2024-12-12
  • Django ManyToManyField 跨越中间表查询的方法

    Django ManyToManyField 跨越中间表查询的方法

    今天小编就为大家分享一篇Django ManyToManyField 跨越中间表查询的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-12-12
  • 在Python中执行和调用JavaScript的多种方法小结

    在Python中执行和调用JavaScript的多种方法小结

    JavaScript(JS)是一种常用的脚本语言,通常用于网页开发,但有时也需要在Python中执行或调用JavaScript代码,本文将详细介绍Python中执行和调用JavaScript的多种方法,每种方法都将附有示例代码,方便理解如何在Python中与JavaScript进行互动,需要的朋友可以参考下
    2023-11-11
  • Python 实现微信防撤回功能

    Python 实现微信防撤回功能

    在微信上突然看到“XXX撤回一条消息”的时候,心里痒不痒?现在就教你如何使用python实现消息防撤回的功能,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,感兴趣的朋友一起看看吧
    2019-04-04

最新评论