Python如何使用bokeh包和geojson数据绘制地图

 更新时间:2020年03月21日 12:18:13   作者:luoheng  
这篇文章主要介绍了Python如何使用bokeh包和geojson数据绘制地图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

最近要绘制伦敦区地图,查阅了很多资料后最终选择使用bokeh包以及伦敦区的geojson数据绘制。
bokeh是基于python的绘图工具,可以绘制各种类型的图表,支持geojson数据的读取及绘制地图。

安装bokeh

$ pip install bokeh

软件版本

python-3.7.7bokeh-2.0.0

数据来源

伦敦地图数据来源于Highmaps地图数据集。下载的是英国的地图数据united-kindom.geo.json。需要对得到的数据进行预处理才能得到只含伦敦地区的数据。这需要对geojson数据的格式有一定的了解。在对数据进行处理之前,先看如何绘制英国地图。

绘制英国地图

from bokeh.plotting import curdoc, figure
from bokeh.models import GeoJSONDataSource

# 读入英国地图数据并传给GeoJSONDataSource
with open("united-kindom.geo.json", encoding="utf8") as f:
  geo_source = GeoJSONDataSource(geojson=f.read())
# 设置一张画布
p = figure(width=500, height=500)
# 使用patches函数以及geo_source绘制地图
p.patches(xs='xs', ys='ys', source=geo_source)

curdoc().add_root(p)

上述代码可以绘制出英国地图。将上述代码保存为test.py,在终端运行

$ bokeh serve --show test.py

这会自动打开浏览器,并显示英国地图。
运行结果如图:

获取伦敦地区数据

获取伦敦地区数据可以手动从united-kingdom.geo.json文件中筛选出伦敦的数据,也可以先用python先把数据过滤一遍,然后将数据传给bokeh。这需要对geojson文件格式有一定的了解,在此不详细介绍。

from bokeh.plotting import curdoc, figure
from bokeh.models import GeoJSONDataSource
import json

# 用json库读取数据
with open("united-kindom.geo.json", encoding="utf8") as f:
  data = json.loads(f.read())
# 判断是不是伦敦地区数据
def isInLondon(district):
  if 'type' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'type-en' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'woe-name' in district['properties'] and 'city of london' in district['properties']['woe-name'].lower():
    return True
  return False
# 过滤数据
data['features'] = list(filter(isInLondon, data['features']))
#
geo_source = GeoJSONDataSource(geojson=json.dumps(data))
p = figure(width=500, height=500)
p.patches(xs='xs', ys='ys', source=geo_source)

curdoc().add_root(p)

运行结果如图:

美化

上面的伦敦地图只是一个大概的轮廓,下面对地图添加一系列功能。

添加各区轮廓线

p.patches(xs='xs', ys='ys', fill_alpha=0.7, # 画轮廓线
    line_color='white', # 线的颜色
    line_width=0.5,   # 线的宽度
    source=geo_source)

现在地图区域轮廓很清晰。

添加颜色

# 为每一个地区增加一个color属性
for i in range(len(data['features'])):
  data['features'][i]['properties']['color'] = ['blue', 'red', 'yellow', 'orange', 'gray', 'purple'][i % 6]
p.patches(xs='xs', ys='ys', fill_alpha=0.7,
    line_color='white',
    line_width=0.5,
    color="color",  # 增加颜色属性,这里的"color"对应每个地区的color属性
    source=geo_source)

现在地图五颜六色。

增加图注

import random
# 随机产生数据用于展示
for i in range(len(data['features'])):
  data['features'][i]['properties']['number'] = random.randint(0, 20_000)
p = figure(width=500, height=500,
    tooltips="@name, number: @number" # 使用tooltips生成图注,@+属性名称,这里的name是数据中原本有的,number是新近添加的。
  )

现在鼠标放到区域上时,会显示"区域名, number: 数字"。

去掉坐标轴与背景线

p.axis.axis_label = None
p.axis.visible = False
p.grid.grid_line_color = None

最终代码

from bokeh.plotting import curdoc, figure
from bokeh.models import GeoJSONDataSource
import json
import random
with open("united-kindom.geo.json", encoding="utf8") as f:
  data = json.loads(f.read())

def isInLondon(district):
  if 'type' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'type-en' in district['properties'] and 'london borough' in district['properties']['type'].lower():
    return True
  if 'woe-name' in district['properties'] and 'city of london' in district['properties']['woe-name'].lower():
    return True
  return False

data['features'] = list(filter(isInLondon, data['features']))
for i in range(len(data['features'])):
  data['features'][i]['properties']['color'] = ['blue', 'red', 'yellow', 'orange', 'gray', 'purple'][i % 6]
  data['features'][i]['properties']['number'] = random.randint(0, 20_000)

geo_source = GeoJSONDataSource(geojson=json.dumps(data))
p = figure(width=500, height=500,
    tooltips="@name, number: @number")
p.patches(xs='xs', ys='ys', fill_alpha=0.7,
    line_color='white',
    line_width=0.5,
    color="color",
    source=geo_source)

p.axis.axis_label = None
p.axis.visible = False
p.grid.grid_line_color = None

curdoc().add_root(p)

伦敦地图完成了

总结

最开始想用pyecharts做的,但是pyecharts并没有伦敦的地图。折腾半天,最后只好自己找geojson数据来画地图。

找到了很多关于地图的数据和工具,比如上文中提到的highmap数据集,以及DataV.altas,这个工具可以可视化地提取中国区域的地图数据,但感觉比起自己找数据,画中国地图还是pyecharts来得实在。

数据最重要。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

相关文章

  • python开发中module模块用法实例分析

    python开发中module模块用法实例分析

    这篇文章主要介绍了python开发中module模块用法,以实例形式较为详细的分析了Python中模块的功能、定义及相关使用技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-11-11
  • python实现高斯投影正反算方式

    python实现高斯投影正反算方式

    今天小编就为大家分享一篇python实现高斯投影正反算方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python中DataFrame与内置数据结构相互转换的实现

    Python中DataFrame与内置数据结构相互转换的实现

    pandas 支持我们从 Excel、CSV、数据库等不同数据源当中读取数据,来构建 DataFrame。但有时数据并不来自这些外部数据源,这就涉及到了 DataFrame 和 Python 内置数据结构之间的相互转换,本文就来和大家详细聊聊
    2023-02-02
  • Python中conda虚拟环境创建及使用小结

    Python中conda虚拟环境创建及使用小结

    本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2025-03-03
  • Django+python服务器部署与环境部署教程详解

    Django+python服务器部署与环境部署教程详解

    这篇文章主要介绍了Django+python服务器部署与环境部署教程,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-03-03
  • Python 使用PIL numpy 实现拼接图片的示例

    Python 使用PIL numpy 实现拼接图片的示例

    今天小编就为大家分享一篇Python 使用PIL numpy 实现拼接图片的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • python带参数装饰器的两种写法示例代码

    python带参数装饰器的两种写法示例代码

    装饰器是 Python 中非常有用的语法特性,可以用于包装或者修改函数的行为,本文介绍了python带参数装饰器的两种写法,需要的朋友可以参考下
    2023-08-08
  • Python标准库之循环器(itertools)介绍

    Python标准库之循环器(itertools)介绍

    这篇文章主要介绍了Python标准库之循环器(itertools)介绍,本文讲解了无穷循环器、函数式工具、组合工具、groupby()、其它工具等内容,需要的朋友可以参考下
    2014-11-11
  • Python实现消消乐小游戏

    Python实现消消乐小游戏

    这篇文章主要为大家详细介绍了Python实现消消乐小游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-09-09
  • 3段Python图像处理的实用代码的分享

    3段Python图像处理的实用代码的分享

    这篇文章主要介绍了3段Python图像处理的实用代码的分享,计算机视觉方向的Python实用代码,用到多种库具有一定的参考价值,需要的小伙伴可以参考一下
    2022-06-06

最新评论