python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

 更新时间:2020年04月02日 09:45:13   作者:SpringHerald  
这篇文章主要介绍了python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

Rosenbrock函数的定义如下:

其函数图像如下:

我分别使用梯度下降法和牛顿法做了寻找Rosenbrock函数的实验。

梯度下降

梯度下降的更新公式:

图中蓝色的点为起点,橙色的曲线(实际上是折线)是寻找最小值点的轨迹,终点(最小值点)为 (1,1)(1,1)。

梯度下降用了约5000次才找到最小值点。

我选择的迭代步长 α=0.002α=0.002,αα 没有办法取的太大,当为0.003时就会发生振荡:

牛顿法

牛顿法的更新公式:

Hessian矩阵中的每一个二阶偏导我是用手算算出来的。

牛顿法只迭代了约5次就找到了函数的最小值点。

下面贴出两个实验的代码。

梯度下降:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker


def f(x, y):
 return (1 - x) ** 2 + 100 * (y - x * x) ** 2


def H(x, y):
 return np.matrix([[1200 * x * x - 400 * y + 2, -400 * x],
      [-400 * x, 200]])


def grad(x, y):
 return np.matrix([[2 * x - 2 + 400 * x * (x * x - y)],
      [200 * (y - x * x)]])


def delta_grad(x, y):
 g = grad(x, y)

 alpha = 0.002
 delta = alpha * g
 return delta


# ----- 绘制等高线 -----
# 数据数目
n = 256
# 定义x, y
x = np.linspace(-1, 1.1, n)
y = np.linspace(-0.1, 1.1, n)

# 生成网格数据
X, Y = np.meshgrid(x, y)

plt.figure()
# 填充等高线的颜色, 8是等高线分为几部分
plt.contourf(X, Y, f(X, Y), 5, alpha=0, cmap=plt.cm.hot)
# 绘制等高线
C = plt.contour(X, Y, f(X, Y), 8, locator=ticker.LogLocator(), colors='black', linewidth=0.01)
# 绘制等高线数据
plt.clabel(C, inline=True, fontsize=10)
# ---------------------

x = np.matrix([[-0.2],
    [0.4]])

tol = 0.00001
xv = [x[0, 0]]
yv = [x[1, 0]]

plt.plot(x[0, 0], x[1, 0], marker='o')

for t in range(6000):
 delta = delta_grad(x[0, 0], x[1, 0])
 if abs(delta[0, 0]) < tol and abs(delta[1, 0]) < tol:
  break
 x = x - delta
 xv.append(x[0, 0])
 yv.append(x[1, 0])

plt.plot(xv, yv, label='track')
# plt.plot(xv, yv, label='track', marker='o')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Gradient for Rosenbrock Function')
plt.legend()
plt.show()

牛顿法:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import ticker


def f(x, y):
 return (1 - x) ** 2 + 100 * (y - x * x) ** 2


def H(x, y):
 return np.matrix([[1200 * x * x - 400 * y + 2, -400 * x],
      [-400 * x, 200]])


def grad(x, y):
 return np.matrix([[2 * x - 2 + 400 * x * (x * x - y)],
      [200 * (y - x * x)]])


def delta_newton(x, y):
 alpha = 1.0
 delta = alpha * H(x, y).I * grad(x, y)
 return delta


# ----- 绘制等高线 -----
# 数据数目
n = 256
# 定义x, y
x = np.linspace(-1, 1.1, n)
y = np.linspace(-1, 1.1, n)

# 生成网格数据
X, Y = np.meshgrid(x, y)

plt.figure()
# 填充等高线的颜色, 8是等高线分为几部分
plt.contourf(X, Y, f(X, Y), 5, alpha=0, cmap=plt.cm.hot)
# 绘制等高线
C = plt.contour(X, Y, f(X, Y), 8, locator=ticker.LogLocator(), colors='black', linewidth=0.01)
# 绘制等高线数据
plt.clabel(C, inline=True, fontsize=10)
# ---------------------

x = np.matrix([[-0.3],
    [0.4]])

tol = 0.00001
xv = [x[0, 0]]
yv = [x[1, 0]]

plt.plot(x[0, 0], x[1, 0], marker='o')

for t in range(100):
 delta = delta_newton(x[0, 0], x[1, 0])
 if abs(delta[0, 0]) < tol and abs(delta[1, 0]) < tol:
  break
 x = x - delta
 xv.append(x[0, 0])
 yv.append(x[1, 0])

plt.plot(xv, yv, label='track')
# plt.plot(xv, yv, label='track', marker='o')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Newton\'s Method for Rosenbrock Function')
plt.legend()
plt.show()

以上这篇python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • python中常用的内置模块汇总

    python中常用的内置模块汇总

    Python内置的模块有很多,我们也已经接触了不少相关模块,接下来咱们就来做一些汇总和介绍,在此我会整理出项目开发最常用的来进行讲解,感兴趣的朋友跟随小编一起看看吧
    2022-01-01
  • Pandas中字符串和时间转换与格式化的实现

    Pandas中字符串和时间转换与格式化的实现

    本文主要介绍了Pandas中字符串和时间转换与格式化的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-01-01
  • python如何开启多线程

    python如何开启多线程

    这篇文章主要介绍了python如何开启多线程问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • 举例讲解Python中装饰器的用法

    举例讲解Python中装饰器的用法

    这篇文章主要介绍了Python中装饰器的用法,是Python学习进阶当中的重要知识,需要的朋友可以参考下
    2015-04-04
  • Python中的HTTP请求超时处理方式

    Python中的HTTP请求超时处理方式

    HTTP请求超时是指客户端在设定的时间内未收到服务器完整响应,合理设置超时时间可提高系统性能和用户体验,Python中,requests库和aiohttp库提供超时控制功能,通过timeout参数设置请求超时,并利用try-except捕获异常,合理超时设置和处理是开发HTTP客户端的重要技巧
    2024-11-11
  • Python cookbook(数据结构与算法)筛选及提取序列中元素的方法

    Python cookbook(数据结构与算法)筛选及提取序列中元素的方法

    这篇文章主要介绍了Python cookbook(数据结构与算法)筛选及提取序列中元素的方法,涉及Python列表推导式、生成器表达式及filter()函数相关使用技巧,需要的朋友可以参考下
    2018-03-03
  • Python中关键字global和nonlocal的区别详解

    Python中关键字global和nonlocal的区别详解

    这篇文章主要给大家介绍了关于Python中关键字global和nonlocal的区别的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-09-09
  • python装饰器中@property属性的使用解析

    python装饰器中@property属性的使用解析

    这篇文章主要介绍了python装饰器中@property属性的使用解析,property属性是一种用起来像是使用的实例属性一样的特殊属性,可以对应于某个方法,需要的朋友可以参考下
    2023-09-09
  • Python中列表和元组的使用方法和区别详解

    Python中列表和元组的使用方法和区别详解

    这篇文章主要介绍了Python中列表和元组的使用方法和区别详解的相关资料,需要的朋友可以参考下
    2016-07-07
  • minconda安装pytorch的详细方法

    minconda安装pytorch的详细方法

    这篇文章主要介绍了minconda安装pytorch的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-03-03

最新评论