浅谈python多线程和多线程变量共享问题介绍

 更新时间:2020年04月17日 10:31:59   作者:Record learning  
这篇文章主要介绍了浅谈python多线程和多线程变量共享问题介绍,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1、demo

第一个代码是多线程的简单使用,编写了线程如何执行函数和类。

import threading
import time
class ClassName(threading.Thread):
	"""创建类,通过多线程执行"""
	def run(self):
		for i in range(5):
			print(i)
			time.sleep(1)

def sing():
	for i in range(1,11):
		print("唱歌第 %d 遍" % i)
		time.sleep(1)

def dance():
	for i in range(1,16):
		print("跳舞第 %d 遍" % i)
		time.sleep(1)

def main():
	t1 = threading.Thread(target = sing)
	t2 = threading.Thread(target = dance)
	t = ClassName()
	
	# 启动线程
	t1.start()
	t2.start()
	t.start()

	while True:
		length = len(threading.enumerate())
		print("正在运行的线程有 %s" %threading.enumerate())
	
		if length <= 1:
			break
		time.sleep(1)

if __name__ == '__main__':
	main()

执行结果可以看到函数 sing、dance和类在同时执行,执行效果太长就不方截图了

2、多线程共享变量

通过定义全局变量,然后再test1函数类部进行更改全局变量,test2打印全局变量。

import threading
import time

#定义全局变量
g_num = 0

def test1():
	"""函数test1对全局变量进行更改"""
	global g_num
	for i in range(1,10):
		g_num += 1

	print("--- test1 线程 g_num = %d--- " % g_num)

def test2():
	"""函数test2 打印全局变量"""
	print("--- test2 线程 g_num = %d--- " % g_num)

def main():
	t1 = threading.Thread(target=test1)
	t2 = threading.Thread(target=test2)

	# 启动线程
	t1.start()
	# 增加睡眠是为了保证优先执行函数test1
	time.sleep(1)
	t2.start()

	print("--- 主线程 g_num = %d--- " % g_num)

if __name__ == '__main__':
	main()

执行结果可以看出,在主线程和创建的两个线程中读取的是一样的值,既可以表明在多线程中变量共享

3、资源竞争

在多线程两个函数中同时更改一个变量时,由于cpu的计算能力,当修改参数的代码块无法一次性执行完成时,就会产生资源竞争

import threading
import time

# 定义全局变量
g_num = 0

def test1(num):
	"""函数test1对全局变量进行更改"""
	global g_num
	for i in range(num):
		g_num += 1

	print("test1 线程 g_num = %d---" % g_num)

def test2(num):
	"""函数test2对全局变量进行更改"""
	global g_num
	for i in range(num):
		g_num += 1

	print("tes2 线程 g_num = %d---" % g_num)

def main():
	t1 = threading.Thread(target=test1, args=(1000000, ))
	t2 = threading.Thread(target=test2, args=(1000000, ))

	t1.start()
	t2.start()

	time.sleep(1)
	print("主线程 g_num = %d---" % g_num)

if __name__ == '__main__':
	main()

可以先试试传递参数为100时,可以看到g_num = 200 这是因为函数代码可以一次性执行完成,当参数为1000000时代码无法一次性执行完成,g_num!= 2000000

4、互斥锁

互斥锁可以解决资源竞争的问题,原理很简单,通过对代码块上锁,保证该代码执行完成前,其它代码无法进行修改。执行完成后解锁,其它代码就可以执行了。

import threading
import time

# 创建变量
g_num = 0
# 创建锁默认为开锁状态
mutex = threading.Lock()

def test1(num):
	global g_num
	for i in range(num):
		# 上锁
		mutex.acquire()
		g_num += 1
		# 解锁
		mutex.release()
	print("--- test1 线程 g_num = %d---" % g_num)

def test2(num):
	global g_num
	for i in range(num):
		# 上锁
		mutex.acquire()
		g_num += 1
		# 解锁
		mutex.release()

	print("--- test2 线程 g_num = %d---" % g_num)

def main():
	t1 = threading.Thread(target=test1, args=(1000000, ))
	t2 = threading.Thread(target=test2, args=(1000000, ))

	t1.start()
	t2.start()

	time.sleep(1)
	print("--- 主线程 g_num = %d---" % g_num)

if __name__ == '__main__':
	main()

可以看到加了锁之后,代码执行不会出现资源竞争,结果也是正常的。互斥锁,上锁的代码越少越好。

5、死锁

当出现多个锁时,就可能会产生死锁这个情况。当关闭一个锁时,这个锁已经为关闭状态的话,程序就会阻塞。就如同下面这个代码中。函数test1关闭mutexB锁时,函数test2提前将其关闭了,未进行解锁,程序就会一直阻塞。

import threading
import time

# 创建两个锁A, B
mutexA = threading.Lock()
mutexB = threading.Lock()

def test1():
	# 对muctexA上锁
	mutexA.acquire()

	# mutexA上锁后,延时1秒,等待mutexB上锁
	print("test1 ---do1---up---")
	time.sleep(1)
	# 此时会堵塞,因为mutexB已经上锁
	mutexB.acquire()
	print("test1 ---do1---down---")
	mutexB.release()

	# 对mutexA解锁
	mutexA.release()

def test2():
	# 对muctexB上锁
	mutexB.acquire()

	# mutexB上锁后,延时1秒,等待mutexA上锁
	print("test2 ---do1---up---")
	time.sleep(1)
	# 此时会堵塞,因为mutexB已经上锁
	mutexA.acquire()
	print("test2 ---do1---down---")
	mutexA.release()

	# 对mutexA解锁
	mutexB.release()

def main():
	t1 = threading.Thread(target=test1)
	t2 = threading.Thread(target=test2)

	t1.start()
	t2.start()


if __name__ == '__main__':
	main()

代码执行效果可以看到程序会一直阻塞
解决方法
1、在程序编写时,就需要注意避免死锁
2、可以参考银行家算法

到此这篇关于浅谈python多线程和多线程变量共享问题介绍的文章就介绍到这了,更多相关python 多线程变量共享内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python爬虫之自动爬取某车之家各车销售数据

    Python爬虫之自动爬取某车之家各车销售数据

    应朋友要求,帮忙采集某车之家的一些汽车品牌的销售数据,包含购车时间、车型、经销商、裸车价等一类信息. 今天我们就简单演示一下采集过程,大家可以根据自己的兴趣进行拓展.比如采集自己喜欢的品牌汽车数据进行统计分析等等,需要的朋友可以参考下
    2021-06-06
  • PyTorch并行训练DistributedDataParallel完整demo

    PyTorch并行训练DistributedDataParallel完整demo

    这篇文章主要为大家介绍了PyTorch并行训练DistributedDataParallel完整demo,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • python 淘宝爬虫小实例

    python 淘宝爬虫小实例

    双十一即将到来,电商都在做活动打折,但打完折是不是真的优惠了,需要我们自己斟酌,毕竟我们不能一直关注着价格,也自然不能知道现在的价格比以前高了还是低了,今天让我们用Python来爬取一下淘宝吧
    2021-11-11
  • python 常见字符串与函数的用法详解

    python 常见字符串与函数的用法详解

    这篇文章主要介绍了python 常见字符串与函数的用法,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2018-11-11
  • 使用Python实现操作控制鼠标和键盘

    使用Python实现操作控制鼠标和键盘

    Python 有很多的库可以实现各种各样的功能,比如使用 pynput 操作,下面小编就来和大家详细介绍一下如何使用pynput进行操作控制鼠标和键盘吧
    2024-02-02
  • Python学习之pip包管理工具的使用

    Python学习之pip包管理工具的使用

    学习 Python 的过程中,经常会使用 pip 命令去安装第三方模块。pip 是 Python 默认集成的包管理工具,而其本质就是 Python 标准库中的一个包,只是比较特殊一些。本文就来为你你全面揭示一下 pip 包管理工具的使用
    2022-08-08
  • Python translator使用实例

    Python translator使用实例

    translator实例应用代码
    2008-09-09
  • python文件选择对话框的操作方法

    python文件选择对话框的操作方法

    这篇文章主要介绍了python文件选择对话框的操作方法,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-06-06
  • python通过zlib实现压缩与解压字符串的方法

    python通过zlib实现压缩与解压字符串的方法

    这篇文章主要介绍了python通过zlib实现压缩与解压字符串的方法,较为详细的介绍了zlib的用法及使用zlib.compressobj和zlib.decompressobj对文件进行压缩解压的方法,需要的朋友可以参考下
    2014-11-11
  • Python笔记(叁)继续学习

    Python笔记(叁)继续学习

    最近时间挤来挤去,看英文的文档,顺便熟悉英语,需要反复好几遍,才能做点笔记。读的是《Beginning.Python.From.Novice.to.Professional》,大家可以下载看一下
    2012-10-10

最新评论