TensorFlow使用Graph的基本操作的实现

 更新时间:2020年04月22日 14:23:23   作者:Baby-Lily  
这篇文章主要介绍了TensorFlow使用Graph的基本操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.创建图

在tensorflow中,一个程序默认是建立一个图的,除了系统自动建立图以外,我们还可以手动建立图,并做一些其他的操作。

下面我们使用tf.Graph函数建立图,使用tf.get_default_graph函数来获取图,使用reset_default_graph对图进行重置。

import tensorflow as tf
import numpy as np


c = tf.constant(1.5)
g = tf.Graph()

with g.as_default():

  c1 = tf.constant(2.0)
  print(c1.graph)
  print(g)
  print(c.graph)

g2 = tf.get_default_graph()
print(g2)

tf.reset_default_graph()
g3 = tf.get_default_graph()
print(g3)

上述的代码运行结果如下所示:

根据上述的运行结果,c是在刚开始的默认图中建立的,所以打印的结果就是13376A1FE10,和g2获取的默认图的值是一样的,然后使用tf.Graph建立了一个新的图,并添加了变量c1,最后又对图进行了重置,替代了原来的默认图。

在使用reset_default_graph()函数的时候,要保证当前图中资源都已经全部进行了释放,否则将会报错。

2.获取张量

我们可以在图中通过名字得到其对应的元素,比如获取图中的变量和OP等元素。

import tensorflow as tf
import numpy as np

g = tf.Graph()

with g.as_default():
  c1 = tf.constant(2.5, name='c1_constant')
  c2 = tf.Variable(1.5, dtype=tf.float32, name='c2_constant')
  add = tf.multiply(c1, c2, name='op_add')

  c_1 = g.get_tensor_by_name(name='c1_constant:0')
  c_2 = g.get_tensor_by_name(name='c2_constant:0')
  c_3 = g.get_tensor_by_name(name='op_add:0')


  print(c_1)
  print(c_2)
  print(c_3)

在进行测试时,我们为元素添加了变量名,在设置变量名的时候,设置好的名字会自动添加后面的:0字符。一般我们可以将名字打印出来,在将打印好的名字进行回填。

3.获取节点操作

获取节点操作OP的方法和获取张量的方法非常类似,使用get_operation_by_name.下面是运行实例:

import tensorflow as tf
import numpy as np

a = tf.constant([[1.0, 2.0]])
b = tf.constant([[1.0], [3.0]])

tensor_1 = tf.matmul(a, b, name='matmul_1')

with tf.Session() as sess:
  sess.run(tf.global_variables_initializer())
  t1 = tf.get_default_graph().get_operation_by_name(name='matmul_1')
  t2 = tf.get_default_graph().get_tensor_by_name(name='matmul_1:0')
  print(t1)
  print('t1: ', sess.run(t1))
  print('t2: ', sess.run(t2))

在上述的代码中,定义了一个OP操作,命名为matmul_1,在运行时我们将op打印出来,在使用名字后面加上:0我们就能得到OP运算的结果的tensor,注意这两者的区别。

我们还可以通过get_opreations函数获取图中的所有信息。此外,我们还可以使用tf.Grapg.as_graph_element函数将传入的对象返回为张量或者op。该函数具有验证和转换功能。

到此这篇关于TensorFlow使用Graph的基本操作的实现的文章就介绍到这了,更多相关TensorFlow Graph操作内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python轮播图与导航栏功能的实现流程全讲解

    Python轮播图与导航栏功能的实现流程全讲解

    这篇文章主要介绍了Python项目轮播图功能实现和导航栏的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
    2022-09-09
  • Python使用qrcode二维码库生成二维码方法详解

    Python使用qrcode二维码库生成二维码方法详解

    这篇文章主要介绍了Python使用qrcode二维码库生成二维码方法详解,需要的朋友可以参考下
    2020-02-02
  • windows下安装python paramiko模块的代码

    windows下安装python paramiko模块的代码

    windows下安装python paramiko模块,有需要的朋友可以参考下
    2013-02-02
  • 用python实现弹球小游戏

    用python实现弹球小游戏

    大家好,本篇文章主要讲的是用python实现弹球小游戏,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • TensorFlow实现简单的CNN的方法

    TensorFlow实现简单的CNN的方法

    这篇文章主要介绍了TensorFlow实现简单的CNN的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-07-07
  • 基于python3抓取pinpoint应用信息入库

    基于python3抓取pinpoint应用信息入库

    这篇文章主要介绍了基于python3抓取pinpoint应用信息入库,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-01-01
  • 详解Python网络爬虫功能的基本写法

    详解Python网络爬虫功能的基本写法

    这篇文章主要介绍了Python网络爬虫功能的基本写法,网络爬虫,即Web Spider,是一个很形象的名字。把互联网比喻成一个蜘蛛网,那么Spider就是在网上爬来爬去的蜘蛛,对网络爬虫感兴趣的朋友可以参考本文
    2016-01-01
  • python获取当前文件路径以及父文件路径的方法

    python获取当前文件路径以及父文件路径的方法

    今天小编就为大家分享一篇python获取当前文件路径以及父文件路径的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python图片处理之图片裁剪教程

    Python图片处理之图片裁剪教程

    这篇博文的目的是从图片中提取一定的矩形区域作为新的图片 简单来说:我的全家福丢了,所以我想从以前的房间照片里,提取出其中的全家福并重新打印一张(忽视画质问题)现在我就是这么个目的,需要的朋友可以参考下
    2021-05-05
  • 关于Python中异常(Exception)的汇总

    关于Python中异常(Exception)的汇总

    异常是指程序中的例外,违例情况。异常机制是指程序出现错误后,程序的处理方法。当出现错误后,程序的执行流程发生改变,程序的控制权转移到异常处理。下面这篇文章主要汇总了关于Python中异常(Exception)的相关资料,需要的朋友可以参考下。
    2017-01-01

最新评论