浅谈Tensorflow加载Vgg预训练模型的几个注意事项

 更新时间:2020年05月26日 11:19:06   作者:GodWriter  
这篇文章主要介绍了浅谈Tensorflow加载Vgg预训练模型的几个注意事项说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

写这个博客的关键Bug: Value passed to parameter 'input' has DataType uint8 not in list of allowed values: float16, bfloat16, float32, float64。本博客将围绕 加载图片 和 保存图片到本地 来详细解释和解决上述的Bug及其引出来的一系列Bug。

加载图片

首先,造成上述Bug的代码如下所示

image_path = "data/test.jpg" # 本地的测试图片
 
image_raw = tf.gfile.GFile(image_path, 'rb').read()
# 一定要tf.float(),否则会报错
image_decoded = tf.image.decode_jpeg(image_raw)
 
# 扩展图片的维度,从三维变成四维,符合Vgg19的输入接口
image_expand_dim = tf.expand_dims(image_decoded, 0)
 
# 定义Vgg19模型
vgg19 = VGG19(data_path)
net = vgg19.feed_forward(image_expand_dim, 'vgg19')
print(net)

上述代码是加载Vgg19预训练模型,并传入图片得到所有层的特征图,具体的代码实现和原理讲解可参考我的另一篇博客:Tensorflow加载Vgg预训练模型。那么,为什么代码会出现: Value passed to parameter 'input' has DataType uint8 not in list of allowed values: float16, bfloat16, float32, float64,这个Bug呢?

这句英文翻译过来是指:传递的值类型是uint8,但是接受的参数类型必须是float的那几种。故原因就是传入值的数据类型错了,那么如何解决这个Bug呢,很简单

image_path = "data/test.jpg" # 本地的测试图片
 
image_raw = tf.gfile.GFile(image_path, 'rb').read()
# 一定要tf.float(),否则会报错
image_decoded = tf.to_float(tf.image.decode_jpeg(image_raw))
 
# 扩展图片的维度,从三维变成四维,符合Vgg19的输入接口
image_expand_dim = tf.expand_dims(image_decoded, 0)
 
# 定义Vgg19模型
vgg19 = VGG19(data_path)
net = vgg19.feed_forward(image_expand_dim, 'vgg19')
print(net)

这两个代码块唯一的变动就是:image_decoded结果在输出前加了一个tf.float(),将其转换为float类型。

在tensorflow API中,tf.image.decode_jpeg()默认读取的图片数据格式为unit8,而不是float。uint8数据的范围在(0, 255)中,正好符合图片的像素范围(0, 255)。但是,保存在本地的Vgg19预训练模型的数据接口为float,所以才造成了本文开头的Bug。

这里还要提一点,若是使用PIL的方法来加载图片,则不会出现上述的Bug,因为通过PIL得到的图片格式是float,而不是uint8,故不需要转换。

很多同学可能会疑惑,若是强行改变了原图片的数据格式,从uint8类型转变成float,会不会导致数据改变或者出错?故我做了下面这个实验:

image_path = "data/3.jpg"
image_raw = tf.gfile.GFile(image_path, 'rb').read()
image_unit8 = tf.image.decode_jpeg(image_raw)
image_float = tf.to_float(image_unit8)
 
with tf.Session() as sess:
 image_unit8_, image_float_ = sess.run([image_unit8, image_float])
 
print("image_unit8_", image_unit8_)
print("image_float_ ", image_float_ )

代码结果如下:

 image_unit8_
 [180, 192, 204],
 [183, 195, 207],
 [186, 198, 210],
 ...,
 [191, 205, 218],
 [191, 205, 218],
 [190, 204, 217]],
 
 image_float_ 
 [180., 192., 204.],
 [183., 195., 207.],
 [186., 198., 210.],
 ...,
 [191., 205., 218.],
 [191., 205., 218.],
 [190., 204., 217.]],

可以看到,数据根本没有变化,只是后面多加了个小数点,变得只有类型,而没有强制改变值,故同学们不需要过度担心。

保存图片到本地

在加载图片的时候,为了使用保存在本地的预训练Vgg19模型,我们需要将读取的图片由uint8格式转换成float格式。那若是我们想将已经转换为float格式的图片再保存到本地,该怎么做呢?

首先,我们根据上述的文字的意思读取图片,并且将其转换为float格式,在将读取的图片再次保存到本地之前,我们首先可视化一下转换格式后的图片,代码如下:

import tensorflow as tf
from matplotlib import pyplot as plt
image_path = "data/boat.jpg"
 
image_raw = tf.gfile.GFile(image_path, 'rb').read()
image_decoded = tf.image.decode_jpeg(image_raw)
image_decoded = tf.to_float(image_decoded)
 
with tf.Session() as sess:
 image_decoded_ = sess.run(image_decoded)
 plt.imshow(image_decoded_)
 plt.show()

生成的图片如下图所示:

左边是原图,右边是转换为float格式的图片,可见将图片转换为float格式,虽然数值没有造成太大影响,但是若想将图片保存到本地就会出现问题。

说了这么多,只为了说一点,在保存图片到本地之前,需要将其格式从float转回uint8,否则会造成一系列错误:图片显示异常,API报错等。正确的保存代码如下:

save_path = "data/boat_copy.jpg"
image_uint = tf.cast(image_decoded, tf.uint8)
with tf.Session() as sess:
 with open(save_path, 'wb') as img:
 image_saved = sess.run(tf.image.encode_jpeg(image_uint))
 img.write(image_saved)

其中只有一句话最关键,即 tf.cast(image_decoded, tf.uint8)。

以上这篇浅谈Tensorflow加载Vgg预训练模型的几个注意事项就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 使用Pycharm+PyQt5弹出子窗口的程序代码

    使用Pycharm+PyQt5弹出子窗口的程序代码

    这篇文章主要介绍了使用Pycharm+PyQt5弹出子窗口的解决方法,本文通过示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-10-10
  • Python元类基础知识示例深度剖析

    Python元类基础知识示例深度剖析

    这篇文章主要为大家介绍了Python元类基础知识深度剖析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-06-06
  • PyTorch之前向传播函数forward用法解读

    PyTorch之前向传播函数forward用法解读

    这篇文章主要介绍了PyTorch之前向传播函数forward用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-09-09
  • python GUI库图形界面开发之PyQt5窗口背景与不规则窗口实例

    python GUI库图形界面开发之PyQt5窗口背景与不规则窗口实例

    这篇文章主要介绍了python GUI库图形界面开发之PyQt5窗口背景与不规则窗口实例,需要的朋友可以参考下
    2020-02-02
  • Vscode使用matplotlib显示图像详细图文教程

    Vscode使用matplotlib显示图像详细图文教程

    最近使用python里的matplotlib库绘图,想在代码结束时显示图片看看,下面这篇文章主要给大家介绍了关于Vscode使用matplotlib显示图像的相关资料,需要的朋友可以参考下
    2024-03-03
  • Python+OpenCV编写车辆计数器系统

    Python+OpenCV编写车辆计数器系统

    本文,我们将使用欧几里德距离跟踪和轮廓的概念在 Python 中使用 OpenCV 构建车辆计数器系统,文中的示例代码讲解详细,感兴趣的可以了解一下
    2022-05-05
  • python 实现在无序数组中找到中位数方法

    python 实现在无序数组中找到中位数方法

    这篇文章主要介绍了python 实现在无序数组中找到中位数方法,具有很好对参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • pytorch之torch.nn.Identity()的作用及解释

    pytorch之torch.nn.Identity()的作用及解释

    这篇文章主要介绍了pytorch之torch.nn.Identity()的作用及解释,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Python五种下划线详解

    Python五种下划线详解

    这篇文章主要介绍了Python下划线5种含义实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2021-10-10
  • Python实现的从右到左字符串替换方法示例

    Python实现的从右到左字符串替换方法示例

    这篇文章主要介绍了Python实现的从右到左字符串替换方法,涉及Python字符串遍历、运算、判断、替换等相关操作技巧,需要的朋友可以参考下
    2018-07-07

最新评论