Python并发请求下限制QPS(每秒查询率)的实现代码

 更新时间:2020年06月05日 10:38:42   作者:Jiuh-star  
这篇文章主要介绍了Python并发请求下限制QPS(每秒查询率)实现方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

  前两天有一个需求,需要访问某API服务器请求数据,该服务器限制了QPS=2(哈哈应该都知道是哪个服务器了吧_(:з」∠)_),因为QPS很小所以就使用阻塞式请求。后来开通了服务,QPS提高到了20,阻塞式请求满足不了这个QPS了,于是使用了GRequests来并发请求数据,但这里又遇到了一个问题:并发太快,服务器通过发送错误码拒绝了很多数据的响应,造成了资源的浪费。
  故在此记录以下几种 节流(Throttle) 方法:

  以下均假设有如下包和数据前提:

import grequests

urls = [
 "https://www.baidu.com",
 "https://www.google.com"
]
requests = [
 grequests.get(url)
 for url in urls
] * 1000

rate = 20 # 表示 20 请求/秒

time.sleep(1)

  这是最简单的方法,通过time.sleep(1)阻塞进程来控制每秒并发数量。用公式表达如下:Time=++time.sleep(1)Time = 请求准备时延 + 请求发送时延 + time.sleep(1)Time=请求准备时延+请求发送时延+time.sleep(1)   但是这种方法有一个较小的问题:不精确 。数据量越大,方差越大。

from time import sleep

req_groups = [
 requests[i: i+rate]
 for i in range(0, len(requests), rate)
]

ret = []
for req_group in req_groups:
 ret += grequests.map(req_group)
 sleep(1)

print(ret)

令牌桶(token bucket)方法

  这种方法较精确,可以确保误差不超过±1(当然前提是你的电脑和目标服务器都能承受的了高并发)。以下是耗时的公式表示:Time=++延Time = 请求准备时延 + 请求发送时延 + 令牌桶阻塞时延Time=请求准备时延+请求发送时延+令牌桶阻塞时延 1+延令牌桶阻塞时延 ≈ 1 - 请求准备时延 + 请求发送时延令牌桶阻塞时延≈1−请求准备时延+请求发送时延   这种方法当然也有一点缺陷,CPU看起来会很高(这是由于 while pass),尽管CPU真实使用率很低。

from time import time

class Throttle:
 def __init__(self, rate):
  self.rate = rate
  self.tokens = 0
  self.last = 0
 
 def consume(self, amount=1):
  now = time()
  
  if self.last == 0:
   self.last = now
  
  elapsed = now - self.last

  if int(elapsed * self.rate):
   self.tokens += int(elapsed * self.rate)
   self.last = now
  
  self.tokens = (
   self.rate
   if self.tokens > self.rate
   else self.tokens
  )
  
  if self.tokens >= amount:
   self.tokens -= amount
  else:
   amount = 0
  
  return amount

throttle = Throttle(rate)

req_groups = [
 requests[i: i+rate]
 for i in range(0, len(requests), rate)
]

ret = []
for req_group in req_groups:
 ret += grequests.map(req_group)
 while throttle.consume():
  pass # 阻塞

print(ret)

GRequests-Throttle

  这是一个使用令牌桶(token bucket)方法进行封装的GRequests修改版,使用方法很简单:
  首先安装grequests-throttle(清华镜像源更新较慢,推荐使用阿里镜像源)

pip install grequests-throttle
import grequests_throttle as gt

ret = gt.map(requests, rate=rate)
print(ret)

总结

  如果并发请求数量较小,可以考虑使用time.sleep(1)简单快捷;当并发请求数量较大时,使用令牌桶(token bucket)方法能最大化利用每一秒;如果不想写太多代码,可以使用GRequests-Throttle包进行请求流量控制。

到此这篇关于Python并发请求下限制QPS(每秒查询率)实现的文章就介绍到这了,更多相关Python并发请求下限制QPS(每秒查询率)实现内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python+selenium 点击单选框-radio的实现方法

    python+selenium 点击单选框-radio的实现方法

    今天小编就为大家分享一篇python+selenium 点击单选框-radio的实现方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-09-09
  • Python ttkbootstrap 制作账户注册信息界面的案例代码

    Python ttkbootstrap 制作账户注册信息界面的案例代码

    ttkbootstrap 是一个基于 tkinter 的界面美化库,使用这个工具可以开发出类似前端 bootstrap 风格的 tkinter 桌面程序。本文重点给大家介绍Python ttkbootstrap 制作账户注册信息界面的案例代码,感兴趣的朋友一起看看吧
    2022-02-02
  • python使用marshal模块序列化实例

    python使用marshal模块序列化实例

    这篇文章主要介绍了python使用marshal模块序列化的方法,是非常实用的技巧,需要的朋友可以参考下
    2014-09-09
  • python实现梯度下降和逻辑回归

    python实现梯度下降和逻辑回归

    这篇文章主要为大家详细介绍了python实现梯度下降和逻辑回归,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2020-03-03
  • 还不知道Anaconda是什么?读这一篇文章就够了

    还不知道Anaconda是什么?读这一篇文章就够了

    Anaconda指的是一个开源的Python发行版本,其包含了Conda、Python等180多个科学包及其依赖项,下面这篇文章主要给大家介绍了关于Anaconda是什么的相关资料,需要的朋友可以参考下
    2023-02-02
  • Python写一个基于MD5的文件监听程序

    Python写一个基于MD5的文件监听程序

    这篇文章主要给大家介绍了关于利用Python如何写一个基于MD5的文件监听程序的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者使用python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-03-03
  • 谈谈如何手动释放Python的内存

    谈谈如何手动释放Python的内存

    Python不会自动清理这些内存,这篇文章主要介绍了谈谈如何手动释放Python的内存,具有一定的参考价值,感兴趣的小伙伴们可以参考一下。
    2016-12-12
  • python Tkinter的简单入门教程

    python Tkinter的简单入门教程

    这篇文章主要介绍了python Tkinter的简单入门教程,帮助大家更好的理解和学习使用python制作gui程序,感兴趣的朋友可以了解下
    2021-04-04
  • python excel和yaml文件的读取封装

    python excel和yaml文件的读取封装

    这篇文章主要介绍了python excel和yaml文件的读取封装,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-01-01
  • Python周期任务神器之Schedule模块使用详解

    Python周期任务神器之Schedule模块使用详解

    这篇文章主要为大家详细介绍了Python中的周期任务神器—Schedule模块的安装和初级、进阶使用方法,文中的示例代码讲解详细,需要的可以参考一下
    2022-04-04

最新评论