浅谈keras中的目标函数和优化函数MSE用法

 更新时间:2020年06月10日 14:33:52   作者:wanghua609  
这篇文章主要介绍了浅谈keras中的目标函数和优化函数MSE用法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean()

model = Sequential()  
model.add(Dense(64, init='uniform', input_dim=10))  
model.add(Activation('tanh'))  
model.add(Activation('softmax'))  
   
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)  
model.compile(loss='mean_squared_error', optimizer=sgd) 

补充知识:(Keras)——keras 损失函数与评价指标详解

1、目标函数

(1)mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean()

(2)mean_absolute_error / mae 绝对值均差,公式为(|y_pred-y_true|).mean()

(3) mean_absolute_percentage_error / mape公式为:(|(y_true - y_pred) / clip((|y_true|),epsilon, infinite)|).mean(axis=-1) * 100,和mae的区别就是,累加的是(预测值与实际值的差)除以(剔除不介于epsilon和infinite之间的实际值),然后求均值。

(4)mean_squared_logarithmic_error / msle公式为: (log(clip(y_pred, epsilon, infinite)+1)- log(clip(y_true, epsilon,infinite)+1.))^2.mean(axis=-1),这个就是加入了log对数,剔除不介于epsilon和infinite之间的预测值与实际值之后,然后取对数,作差,平方,累加求均值。

(5)squared_hinge 公式为:(max(1-y_truey_pred,0))^2.mean(axis=-1),取1减去预测值与实际值乘积的结果与0比相对大的值的平方的累加均值。

(6)hinge 公式为:(max(1-y_truey_pred,0)).mean(axis=-1),取1减去预测值与实际值乘积的结果与0比相对大的值的的累加均值。

(7)binary_crossentropy: 常说的逻辑回归, 就是常用的交叉熵函

(8)categorical_crossentropy: 多分类的逻辑

2、性能评估函数:

(1)binary_accuracy: 对二分类问题,计算在所有预测值上的平均正确率

(2)categorical_accuracy:对多分类问题,计算再所有预测值上的平均正确率

(3)sparse_categorical_accuracy:与categorical_accuracy相同,在对稀疏的目标值预测时有用

(4)top_k_categorical_accracy: 计算top-k正确率,当预测值的前k个值中存在目标类别即认为预测正确

(5)sparse_top_k_categorical_accuracy:与top_k_categorical_accracy作用相同,但适用于稀疏情况

以上这篇浅谈keras中的目标函数和优化函数MSE用法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • pymysql 插入数据 转义处理方式

    pymysql 插入数据 转义处理方式

    今天小编就为大家分享一篇pymysql 插入数据 转义处理方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-03-03
  • Python中用post、get方式提交数据的方法示例

    Python中用post、get方式提交数据的方法示例

    最近在学习使用Python,发现网上很少提到如何使用post,所以下面这篇文章主要给大家介绍了关于Python中用post、get方式提交数据的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面来一起看看吧。
    2017-09-09
  • python 随机数使用方法,推导以及字符串,双色球小程序实例

    python 随机数使用方法,推导以及字符串,双色球小程序实例

    下面小编就为大家带来一篇python 随机数使用方法,推导以及字符串,双色球小程序实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-09-09
  • python实现PolynomialFeatures多项式的方法

    python实现PolynomialFeatures多项式的方法

    这篇文章主要介绍了python实现PolynomialFeatures多项式的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • TensorFlow2.0矩阵与向量的加减乘实例

    TensorFlow2.0矩阵与向量的加减乘实例

    今天小编就为大家分享一篇TensorFlow2.0矩阵与向量的加减乘实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • 查看Python依赖包及其版本号信息的方法

    查看Python依赖包及其版本号信息的方法

    今天小编就为大家分享一篇查看Python依赖包及其版本号信息的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-08-08
  • python多进程操作实例

    python多进程操作实例

    这篇文章主要介绍了python多进程操作实例,本文讲解了multiprocessing类的相关方法,然后给出了一个综合实例和运行效果,需要的朋友可以参考下
    2014-11-11
  • Python字符串不可不知的6个小技巧分享

    Python字符串不可不知的6个小技巧分享

    字符串可以理解为一段普通的文本内容,在python里,使用引号来表示一个字符串,不同的引号表示的效果会有区别,本文将给介绍Python字符串不可不知的6个小技巧分享,并有详细的代码供大家参考,感兴趣的小伙伴可以参考一下
    2024-03-03
  • 利用Python list列表修改元素

    利用Python list列表修改元素

    这篇文章主要介绍了利用Python list列表修改元素,Python 提供了两种修改列表(list)元素的方法,我们可以每次修改单个元素,也可以每次修改一组元素
    2022-06-06
  • Django的HttpRequest和HttpResponse对象详解

    Django的HttpRequest和HttpResponse对象详解

    这篇文章主要介绍了Django的HttpRequest和HttpResponse对象,分享了相关代码示例,小编觉得还是挺不错的,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01

最新评论