Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)

 更新时间:2020年06月14日 11:49:54   作者:BlankSeed  
这篇文章主要介绍了Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.单列运算

在Pandas中,DataFrame的一列就是一个Series, 可以通过map来对一列进行操作:

df['col2'] = df['col1'].map(lambda x: x**2)

其中lambda函数中的x代表当前元素。可以使用另外的函数来代替lambda函数,例如:

define square(x): 
  return (x ** 2) 
 
df['col2'] = df['col1'].map(square) 

2.多列运算

 apply()会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起。

要对DataFrame的多个列同时进行运算,可以使用apply,例如col3 = col1 + 2 * col2:

df['col3'] = df.apply(lambda x: x['col1'] + 2 * x['col2'], axis=1) 

其中x带表当前行,可以通过下标进行索引。

示例2

In [44]: f = lambda x : x.max()-x.min()

In [45]: df.apply(f)
Out[45]:
data1  5.042275
data2  1.967290
dtype: float64

In [46]: df.apply(f,axis=1)
Out[46]:
0  2.810074
1  1.009774
2  0.537183
3  0.813714
4  1.750022
dtype: float64

applymap()

用DataFrame的applymap方法,可以将函数应用到元素级的数据上。

In [47]: f = lambda x : x+1

In [48]: df.applymap(f)
Out[48]:
   data1   data2
0 -1.332263 1.477812
1 0.284755 1.294528
2 0.066644 0.603827
3 1.757402 2.571117
4 3.710012 1.959990

Series也有一个元素级函数应用的方法map

In [49]: df['data1']
Out[49]:
0  -2.332263
1  -0.715245
2  -0.933356
3  0.757402
4  2.710012
Name: data1, dtype: float64

In [50]: df['data1'].map(f)
Out[50]:
0  -1.332263
1  0.284755
2  0.066644
3  1.757402
4  3.710012
Name: data1, dtype: float64

3.分组运算

可以结合groupby与transform来方便地实现类似SQL中的聚合运算的操作:

df['col3'] = df.groupby('col1')['col2'].transform(lambda x: (x.sum() - x) / x.count()) 

在transform函数中x.sum()与x.count()与SQL类似,计算的是当前group中的和与数量,还可以将transform的结果作为一个一个映射来使用, 例如:

sumcount = df.groupby('col1')['col2'].transform(lambda x: x.sum() + x.count()) 
df['col1'].map(sumcount) 

对col1进行一个map,得到对应的col2的运算值。

4.聚合函数

结合groupby与agg实现SQL中的分组聚合运算操作,需要使用相应的聚合函数:

df['col2'] = df.groupby('col1').agg({'col1':{'col1_mean': mean, 'col1_sum‘': sum}, 'col2': {'col2_count': count}}) 

上述代码生成了col1_mean, col1_sum与col2_count列。

示例2

In [52]: df.agg(['mean','sum'])
Out[52]:
     data1   data2
mean -0.102690 0.581455
sum -0.513449 2.907274

函数 说明
count 分组中非Nan值的数量
sum 非Nan值的和
mean 非Nan值的平均值
median 非Nan值的算术中间数
std,var 标准差、方差
min,max 非Nan值的最小值和最大值
prob 非Nan值的积
first,last 第一个和最后一个非Nan值

到此这篇关于Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)的文章就介绍到这了,更多相关Pandas map apply transform agg内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python合并字典键值并去除重复元素的实例

    Python合并字典键值并去除重复元素的实例

    下面小编就为大家带来一篇Python合并字典键值并去除重复元素的实例。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2016-12-12
  • python字典如何获取最大和最小value对应的key

    python字典如何获取最大和最小value对应的key

    这篇文章主要介绍了python字典如何获取最大和最小value对应的key问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-11-11
  • python操作ini类型配置文件的实例教程

    python操作ini类型配置文件的实例教程

    这篇文章主要给大家介绍了关于python操作ini类型配置文件的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • Python进行常见图像形态学处理操作的示例代码

    Python进行常见图像形态学处理操作的示例代码

    这篇文章主要为大家详细介绍了如何使用Python进行常见的图像形态学处理,例如腐蚀、膨胀、礼帽、黑帽等,感兴趣的小伙伴可以跟随小编一起学习一下
    2024-03-03
  • python爬虫之爬取谷歌趋势数据

    python爬虫之爬取谷歌趋势数据

    这篇文章主要介绍了python爬虫之爬取谷歌趋势数据,文中有非常详细的代码示例,对正在学习python爬虫的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-04-04
  • python GUI库图形界面开发之PyQt5简单绘图板实例与代码分析

    python GUI库图形界面开发之PyQt5简单绘图板实例与代码分析

    这篇文章主要介绍了python GUI库图形界面开发之PyQt5简单绘图板实例与代码分析,需要的朋友可以参考下
    2020-03-03
  • Python中单例模式总结

    Python中单例模式总结

    单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在。当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场。
    2018-02-02
  • python中redis的安装和使用

    python中redis的安装和使用

    本文给大家介绍的是在Python中安装和使用redis数据库的方法以及简单示例,有需要的小伙伴可以参考下
    2016-12-12
  • 学会迭代器设计模式,帮你大幅提升python性能

    学会迭代器设计模式,帮你大幅提升python性能

    这篇文章主要介绍了python 迭代器设计模式的相关资料,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2021-01-01
  • Python数据库安装及MySQL Connector应用教程

    Python数据库安装及MySQL Connector应用教程

    这篇文章主要为大家介绍了Python数据库安装及MySQL Connector应用教程,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-11-11

最新评论