Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)

 更新时间:2020年06月14日 11:49:54   作者:BlankSeed  
这篇文章主要介绍了Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.单列运算

在Pandas中,DataFrame的一列就是一个Series, 可以通过map来对一列进行操作:

df['col2'] = df['col1'].map(lambda x: x**2)

其中lambda函数中的x代表当前元素。可以使用另外的函数来代替lambda函数,例如:

define square(x): 
  return (x ** 2) 
 
df['col2'] = df['col1'].map(square) 

2.多列运算

 apply()会将待处理的对象拆分成多个片段,然后对各片段调用传入的函数,最后尝试将各片段组合到一起。

要对DataFrame的多个列同时进行运算,可以使用apply,例如col3 = col1 + 2 * col2:

df['col3'] = df.apply(lambda x: x['col1'] + 2 * x['col2'], axis=1) 

其中x带表当前行,可以通过下标进行索引。

示例2

In [44]: f = lambda x : x.max()-x.min()

In [45]: df.apply(f)
Out[45]:
data1  5.042275
data2  1.967290
dtype: float64

In [46]: df.apply(f,axis=1)
Out[46]:
0  2.810074
1  1.009774
2  0.537183
3  0.813714
4  1.750022
dtype: float64

applymap()

用DataFrame的applymap方法,可以将函数应用到元素级的数据上。

In [47]: f = lambda x : x+1

In [48]: df.applymap(f)
Out[48]:
   data1   data2
0 -1.332263 1.477812
1 0.284755 1.294528
2 0.066644 0.603827
3 1.757402 2.571117
4 3.710012 1.959990

Series也有一个元素级函数应用的方法map

In [49]: df['data1']
Out[49]:
0  -2.332263
1  -0.715245
2  -0.933356
3  0.757402
4  2.710012
Name: data1, dtype: float64

In [50]: df['data1'].map(f)
Out[50]:
0  -1.332263
1  0.284755
2  0.066644
3  1.757402
4  3.710012
Name: data1, dtype: float64

3.分组运算

可以结合groupby与transform来方便地实现类似SQL中的聚合运算的操作:

df['col3'] = df.groupby('col1')['col2'].transform(lambda x: (x.sum() - x) / x.count()) 

在transform函数中x.sum()与x.count()与SQL类似,计算的是当前group中的和与数量,还可以将transform的结果作为一个一个映射来使用, 例如:

sumcount = df.groupby('col1')['col2'].transform(lambda x: x.sum() + x.count()) 
df['col1'].map(sumcount) 

对col1进行一个map,得到对应的col2的运算值。

4.聚合函数

结合groupby与agg实现SQL中的分组聚合运算操作,需要使用相应的聚合函数:

df['col2'] = df.groupby('col1').agg({'col1':{'col1_mean': mean, 'col1_sum‘': sum}, 'col2': {'col2_count': count}}) 

上述代码生成了col1_mean, col1_sum与col2_count列。

示例2

In [52]: df.agg(['mean','sum'])
Out[52]:
     data1   data2
mean -0.102690 0.581455
sum -0.513449 2.907274

函数 说明
count 分组中非Nan值的数量
sum 非Nan值的和
mean 非Nan值的平均值
median 非Nan值的算术中间数
std,var 标准差、方差
min,max 非Nan值的最小值和最大值
prob 非Nan值的积
first,last 第一个和最后一个非Nan值

到此这篇关于Pandas对DataFrame单列/多列进行运算(map, apply, transform, agg)的文章就介绍到这了,更多相关Pandas map apply transform agg内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 快速了解python leveldb

    快速了解python leveldb

    这篇文章主要介绍了快速了解python leveldb,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • Python爬虫框架Scrapy常用命令总结

    Python爬虫框架Scrapy常用命令总结

    这篇文章主要介绍了Python爬虫框架Scrapy常用命令,结合实例形式总结分析了Scrapy框架中常见的全局命令与项目命令功能、使用方法及操作注意事项,需要的朋友可以参考下
    2018-07-07
  • Python实现类似比特币的加密货币区块链的创建与交易实例

    Python实现类似比特币的加密货币区块链的创建与交易实例

    本文讲解了Python实现类似比特币的加密货币区块链的创建与交易实例方法
    2018-03-03
  • Python利用Charles 实现全部自动答题思路流程分析

    Python利用Charles 实现全部自动答题思路流程分析

    这篇文章主要介绍了Python利用Charles 实现全部自动答题思路流程分析,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-08-08
  • Python短信轰炸的代码

    Python短信轰炸的代码

    这篇文章主要介绍了Python短信轰炸的代码,代码简单易懂,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-03-03
  • 利用Python将原始边列表转换为邻接矩阵的过程

    利用Python将原始边列表转换为邻接矩阵的过程

    有时候,我们会从外部数据源中得到原始的边列表,而需要将其转换为邻接矩阵以便进行后续的分析和处理,本文将介绍如何使用Python来实现这一转换过程,需要的朋友可以参考下
    2024-04-04
  • 命令行运行Python脚本时传入参数的三种方式详解

    命令行运行Python脚本时传入参数的三种方式详解

    这篇文章主要介绍了命令行运行Python脚本时传入参数的三种方式详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10
  • python实现井字棋游戏

    python实现井字棋游戏

    这篇文章主要为大家详细介绍了python实现井字棋游戏的相关资料,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2016-02-02
  • Python 元类使用说明

    Python 元类使用说明

    元类就是类的模板——太形象了了呀,霍霍。
    2009-12-12
  • Python内建类型bytes深入理解

    Python内建类型bytes深入理解

    这篇文章主要为大家介绍了Python内建类型bytes的深入理解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05

最新评论