keras 自定义loss model.add_loss的使用详解

 更新时间:2020年06月22日 14:44:41   作者:fanzy1234  
这篇文章主要介绍了keras 自定义loss model.add_loss的使用详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

一点见解,不断学习,欢迎指正

1、自定义loss层作为网络一层加进model,同时该loss的输出作为网络优化的目标函数

from keras.models import Model
import keras.layers as KL
import keras.backend as K
import numpy as np
from keras.utils.vis_utils import plot_model
 
x_train=np.random.normal(1,1,(100,784))
 
x_in = KL.Input(shape=(784,))
x = x_in
x = KL.Dense(100, activation='relu')(x)
x = KL.Dense(784, activation='sigmoid')(x)
def custom_loss1(y_true,y_pred):
 return K.mean(K.abs(y_true-y_pred))
loss1=KL.Lambda(lambda x:custom_loss1(*x),name='loss1')([x,x_in])
 
model = Model(x_in, [loss1])
model.get_layer('loss1').output#取出loss
model.add_loss(loss1)#作为网络优化的目标函数
model.compile(optimizer='adam')
plot_model(model,to_file='model.png',show_shapes=True)
#
model.fit(x_train, None, epochs=5)

2、自定义loss,作为网络优化的目标函数

x_in = KL.Input(shape=(784,))
x = x_in
x = KL.Dense(100, activation='relu')(x)
x = KL.Dense(784, activation='sigmoid')(x)
 
model = Model(x_in, x)
loss = K.mean((x - x_in)**2)
model.add_loss(loss)#只是作为loss优化目标函数
model.compile(optimizer='adam')
plot_model(model,to_file='model.png',show_shapes=True)
model.fit(x_train, None, epochs=5)

补充知识:keras load_weights fine-tune

分享一个小技巧,就是在构建网络模型的时候,不要怕麻烦,给每一层都定义一个名字,这样在复用之前的参数权重的时候,除了官网给的先加载权重,再冻结权重之外,你可以通过简单的修改层的名字来达到加载之前训练的权重的目的,假设权重文件保存为model_pretrain.h5 ,重新使用的时候,我把想要复用的层的名字设置成一样的,然后

model.load_weights('model_pretrain.h5', by_name=True)

以上这篇keras 自定义loss model.add_loss的使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python高级编程之消息队列(Queue)与进程池(Pool)实例详解

    Python高级编程之消息队列(Queue)与进程池(Pool)实例详解

    这篇文章主要介绍了Python高级编程之消息队列(Queue)与进程池(Pool),结合实例形式详细分析了Python消息队列与进程池的相关原理、使用技巧与操作注意事项,需要的朋友可以参考下
    2019-11-11
  • Python入门之模块和包用法详解

    Python入门之模块和包用法详解

    这篇文章主要为大家详细介绍一下Python中的包与模块的使用,文中的示例讲解详细,对我们学习Python有一定帮助,感兴趣的小伙伴可以学习一下
    2022-07-07
  • python gravis库实现图形数据可视化实例探索

    python gravis库实现图形数据可视化实例探索

    这篇文章主要为大家介绍了python gravis库实现图形数据可视化实例探索,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-02-02
  • Python seaborn barplot画图案例

    Python seaborn barplot画图案例

    这篇文章主要介绍了Python seaborn barplot画图案例,文章围绕主题展开详细的内容介绍,具有一定的参考价值,需要的小伙伴可以参考一下
    2022-07-07
  • pymysql模块的操作实例

    pymysql模块的操作实例

    在本篇文章里小编给大家分享的是关于pymysql模块的简单操作,有需要的朋友们可以参考下。
    2019-12-12
  • Python sqrt()函数用法说明

    Python sqrt()函数用法说明

    这篇文章主要介绍了Python sqrt()函数用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-03-03
  • Python神器之使用watchdog监控文件变化

    Python神器之使用watchdog监控文件变化

    这篇文章主要为大家详细介绍了Python中的神器watchdog以及如何使用watchdog监控文件变化,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下
    2023-12-12
  • python numpy实现文件存取的示例代码

    python numpy实现文件存取的示例代码

    这篇文章主要介绍了python numpy实现文件存取的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-05-05
  • python多进程和多线程究竟谁更快(详解)

    python多进程和多线程究竟谁更快(详解)

    下面小编就为大家带来一篇python多进程和多线程究竟谁更快(详解)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • 在Pycharm中设置默认自动换行的方法

    在Pycharm中设置默认自动换行的方法

    今天小编就为大家分享一篇在Pycharm中设置默认自动换行的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01

最新评论