keras的ImageDataGenerator和flow()的用法说明

 更新时间:2020年07月03日 14:23:32   作者:o0程卓0o  
这篇文章主要介绍了keras的ImageDataGenerator和flow()的用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

ImageDataGenerator的参数自己看文档

from keras.preprocessing import image
import numpy as np

X_train=np.ones((3,123,123,1))
Y_train=np.array([[1],[2],[2]])
generator=image.ImageDataGenerator(featurewise_center=False,
  samplewise_center=False,
  featurewise_std_normalization=False,
  samplewise_std_normalization=False,
  zca_whitening=False,
  zca_epsilon=1e-6,
  rotation_range=180,
  width_shift_range=0.2,
  height_shift_range=0.2,
  shear_range=0,
  zoom_range=0.001,
  channel_shift_range=0,
  fill_mode='nearest',
  cval=0.,
  horizontal_flip=True,
  vertical_flip=True,
  rescale=None,
  preprocessing_function=None,
  data_format='channels_last')

a=generator.flow(X_train,Y_train,batch_size=20)#生成的是一个迭代器,可直接用于for循环
'''
batch_size如果小于X的第一维m,next生成的多维矩阵的第一维是为batch_size,输出是从输入中随机选取batch_size个数据
batch_size如果大于X的第一维m,next生成的多维矩阵的第一维是m,输出是m个数据,不过顺序随机
,输出的X,Y是一一对对应的
如果要直接用于tf.placeholder(),要求生成的矩阵和要与tf.placeholder相匹配

'''
X,Y=next(a)

print(Y)
X,Y=next(a)

print(Y)
X,Y=next(a)

print(Y)
X,Y=next(a)

输出

[[2]
 [1]
 [2]]

[[2]
 [2]
 [1]]

[[2]
 [2]
 [1]]

[[2]
 [2]
 [1]]

补充知识:tensorflow 与keras 混用之坑

在使用tensorflow与keras混用是model.save 是正常的但是在load_model的时候报错了在这里mark 一下

其中错误为:TypeError: tuple indices must be integers, not list

再一一番百度后无结果,上谷歌后找到了类似的问题。但是是一对鸟文不知道什么东西(翻译后发现是俄文)。后来谷歌翻译了一下找到了解决方法。故将原始问题文章贴上来警示一下

原训练代码

from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense
 
#Каталог с данными для обучения
train_dir = 'train'
# Каталог с данными для проверки
val_dir = 'val'
# Каталог с данными для тестирования
test_dir = 'val'
 
# Размеры изображения
img_width, img_height = 800, 800
# Размерность тензора на основе изображения для входных данных в нейронную сеть
# backend Tensorflow, channels_last
input_shape = (img_width, img_height, 3)
# Количество эпох
epochs = 1
# Размер мини-выборки
batch_size = 4
# Количество изображений для обучения
nb_train_samples = 300
# Количество изображений для проверки
nb_validation_samples = 25
# Количество изображений для тестирования
nb_test_samples = 25
 
model = Sequential()
 
model.add(Conv2D(32, (7, 7), padding="same", input_shape=input_shape))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(10, 10)))
 
model.add(Conv2D(64, (5, 5), padding="same"))
model.add(BatchNormalization())
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(10, 10)))
 
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
 
model.compile(loss='categorical_crossentropy',
       optimizer="Nadam",
       metrics=['accuracy'])
print(model.summary())
datagen = ImageDataGenerator(rescale=1. / 255)
 
train_generator = datagen.flow_from_directory(
  train_dir,
  target_size=(img_width, img_height),
  batch_size=batch_size,
  class_mode='categorical')
 
val_generator = datagen.flow_from_directory(
  val_dir,
  target_size=(img_width, img_height),
  batch_size=batch_size,
  class_mode='categorical')
 
test_generator = datagen.flow_from_directory(
  test_dir,
  target_size=(img_width, img_height),
  batch_size=batch_size,
  class_mode='categorical')
 
model.fit_generator(
  train_generator,
  steps_per_epoch=nb_train_samples // batch_size,
  epochs=epochs,
  validation_data=val_generator,
  validation_steps=nb_validation_samples // batch_size)
 
print('Сохраняем сеть')
model.save("grib.h5")
print("Сохранение завершено!")

模型载入

from tensorflow.python.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from tensorflow.python.keras.layers import Activation, Dropout, Flatten, Dense
from keras.models import load_model
 
print("Загрузка сети")
model = load_model("grib.h5")
print("Загрузка завершена!")

报错

/usr/bin/python3.5 /home/disk2/py/neroset/do.py
/home/mama/.local/lib/python3.5/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
 from ._conv import register_converters as _register_converters
Using TensorFlow backend.
Загрузка сети
Traceback (most recent call last):
 File "/home/disk2/py/neroset/do.py", line 13, in <module>
  model = load_model("grib.h5")
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 243, in load_model
  model = model_from_config(model_config, custom_objects=custom_objects)
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 317, in model_from_config
  return layer_module.deserialize(config, custom_objects=custom_objects)
 File "/usr/local/lib/python3.5/dist-packages/keras/layers/__init__.py", line 55, in deserialize
  printable_module_name='layer')
 File "/usr/local/lib/python3.5/dist-packages/keras/utils/generic_utils.py", line 144, in deserialize_keras_object
  list(custom_objects.items())))
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 1350, in from_config
  model.add(layer)
 File "/usr/local/lib/python3.5/dist-packages/keras/models.py", line 492, in add
  output_tensor = layer(self.outputs[0])
 File "/usr/local/lib/python3.5/dist-packages/keras/engine/topology.py", line 590, in __call__
  self.build(input_shapes[0])
 File "/usr/local/lib/python3.5/dist-packages/keras/layers/normalization.py", line 92, in build
  dim = input_shape[self.axis]
TypeError: tuple indices must be integers or slices, not list
 
Process finished with exit code 1

战斗种族解释

убераю BatchNormalization всё работает хорошо. Не подскажите в чём ошибка?Выяснил что сохранение keras и нормализация tensorflow не работают вместе нужно просто изменить строку импорта.(译文:整理BatchNormalization一切正常。 不要告诉我错误是什么?我发现保存keras和规范化tensorflow不能一起工作;只需更改导入字符串即可。)

强调文本 强调文本

keras.preprocessing.image import ImageDataGenerator
keras.models import Sequential
keras.layers import Conv2D, MaxPooling2D, BatchNormalization
keras.layers import Activation, Dropout, Flatten, Dense

##完美解决

##附上原文链接

https://qa-help.ru/questions/keras-batchnormalization

以上这篇keras的ImageDataGenerator和flow()的用法说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • 一文带你了解CNN(卷积神经网络)

    一文带你了解CNN(卷积神经网络)

    CNN是神经网络中的一种,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。本文主要讲解了CNN(卷积神经网络)的基础内容,想了解更多的小伙伴可以看一看这篇文章
    2021-09-09
  • Python数据分析之获取双色球历史信息的方法示例

    Python数据分析之获取双色球历史信息的方法示例

    这篇文章主要介绍了Python数据分析之获取双色球历史信息的方法,涉及Python网页抓取、正则匹配、文件读写及数值运算等相关操作技巧,需要的朋友可以参考下
    2018-02-02
  • 基于Python实现屏幕取色工具

    基于Python实现屏幕取色工具

    屏幕取色小工具‌是一种实用的软件工具,主要用于从屏幕上精确获取颜色值,非常适合设计、编程等需要精确配色的领域,下面我们看看如何利用Python编写一个屏幕取色工具吧
    2024-12-12
  • 举例详解Python中threading模块的几个常用方法

    举例详解Python中threading模块的几个常用方法

    这篇文章主要介绍了举例详解Python中threading模块的几个常用方法,threading模块用来创建和操作线程,是Python学习当中的重要知识,需要的朋友可以参考下
    2015-06-06
  • python中的pyc文件是什么

    python中的pyc文件是什么

    这篇文章主要介绍了python中的pyc文件是什么,pyc文件是Python编译过的字节码文件,这个字节码是一种低级的、与平台无关的代码,还不知道的朋友来了解一下吧
    2023-04-04
  • 使用python制作一个解压缩软件

    使用python制作一个解压缩软件

    这篇文章主要介绍了python制作一个解压缩软件的方法,非常不错,具有一定的参考借鉴价值,需要的朋友可以参考下
    2019-11-11
  • Python全栈之正则表达式

    Python全栈之正则表达式

    这篇文章主要为大家介绍了Python正则表达式,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2021-11-11
  • 解读Numpy中的排序(sort,argsort)

    解读Numpy中的排序(sort,argsort)

    这篇文章主要介绍了关于Numpy中的排序(sort,argsort),具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2023-06-06
  • 浅析Python基础-流程控制

    浅析Python基础-流程控制

    Python编程语言的作用非常强大,而且其应用方便的特点也对开发人员起到了非常大的作用。在这里我们就可以先从Python流程控制关键字的相关概念开始了解,从而初步掌握这一语言的特点
    2016-03-03
  • django框架实现一次性上传多个文件功能示例【批量上传】

    django框架实现一次性上传多个文件功能示例【批量上传】

    这篇文章主要介绍了django框架实现一次性上传多个文件功能,结合实例形式分析了Django框架批量上传相关实现技巧与操作注意事项,需要的朋友可以参考下
    2019-06-06

最新评论