PyTorch: Softmax多分类实战操作

 更新时间:2020年07月07日 15:02:45   作者:AI小白入门  
这篇文章主要介绍了PyTorch: Softmax多分类实战操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

多分类一种比较常用的做法是在最后一层加softmax归一化,值最大的维度所对应的位置则作为该样本对应的类。本文采用PyTorch框架,选用经典图像数据集mnist学习一波多分类。

MNIST数据集

MNIST 数据集(手写数字数据集)来自美国国家标准与技术研究所, National Institute of Standards and Technology (NIST). 训练集 (training set) 由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局 (the Census Bureau) 的工作人员. 测试集(test set) 也是同样比例的手写数字数据。MNIST数据集下载地址:http://yann.lecun.com/exdb/mnist/。手写数字的MNIST数据库包括60,000个的训练集样本,以及10,000个测试集样本。

其中:

train-images-idx3-ubyte.gz (训练数据集图片)

train-labels-idx1-ubyte.gz (训练数据集标记类别)

t10k-images-idx3-ubyte.gz: (测试数据集)

t10k-labels-idx1-ubyte.gz(测试数据集标记类别)

MNIST数据集是经典图像数据集,包括10个类别(0到9)。每一张图片拉成向量表示,如下图784维向量作为第一层输入特征。

Softmax分类

softmax函数的本质就是将一个K 维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间,并且压缩后的K个值相加等于1(变成了概率分布)。在选用Softmax做多分类时,可以根据值的大小来进行多分类的任务,如取权重最大的一维。softmax介绍和公式网上很多,这里不介绍了。下面使用Pytorch定义一个多层网络(4个隐藏层,最后一层softmax概率归一化),输出层为10正好对应10类。

PyTorch实战

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable

# Training settings
batch_size = 64

# MNIST Dataset
train_dataset = datasets.MNIST(root='./mnist_data/',
                train=True,
                transform=transforms.ToTensor(),
                download=True)

test_dataset = datasets.MNIST(root='./mnist_data/',
               train=False,
               transform=transforms.ToTensor())

# Data Loader (Input Pipeline)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                      batch_size=batch_size,
                      shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                     batch_size=batch_size,
                     shuffle=False)
class Net(nn.Module):
  def __init__(self):
    super(Net, self).__init__()
    self.l1 = nn.Linear(784, 520)
    self.l2 = nn.Linear(520, 320)
    self.l3 = nn.Linear(320, 240)
    self.l4 = nn.Linear(240, 120)
    self.l5 = nn.Linear(120, 10)

  def forward(self, x):
    # Flatten the data (n, 1, 28, 28) --> (n, 784)
    x = x.view(-1, 784)
    x = F.relu(self.l1(x))
    x = F.relu(self.l2(x))
    x = F.relu(self.l3(x))
    x = F.relu(self.l4(x))
    return F.log_softmax(self.l5(x), dim=1)
    #return self.l5(x)
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
def train(epoch):

  # 每次输入barch_idx个数据
  for batch_idx, (data, target) in enumerate(train_loader):
    data, target = Variable(data), Variable(target)

    optimizer.zero_grad()
    output = model(data)
    # loss
    loss = F.nll_loss(output, target)
    loss.backward()
    # update
    optimizer.step()
    if batch_idx % 200 == 0:
      print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
        epoch, batch_idx * len(data), len(train_loader.dataset),
        100. * batch_idx / len(train_loader), loss.data[0]))
def test():
  test_loss = 0
  correct = 0
  # 测试集
  for data, target in test_loader:
    data, target = Variable(data, volatile=True), Variable(target)
    output = model(data)
    # sum up batch loss
    test_loss += F.nll_loss(output, target).data[0]
    # get the index of the max
    pred = output.data.max(1, keepdim=True)[1]
    correct += pred.eq(target.data.view_as(pred)).cpu().sum()

  test_loss /= len(test_loader.dataset)
  print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
    test_loss, correct, len(test_loader.dataset),
    100. * correct / len(test_loader.dataset)))

for epoch in range(1,6):
  train(epoch)
  test()

输出结果:
Train Epoch: 1 [0/60000 (0%)]	Loss: 2.292192
Train Epoch: 1 [12800/60000 (21%)]	Loss: 2.289466
Train Epoch: 1 [25600/60000 (43%)]	Loss: 2.294221
Train Epoch: 1 [38400/60000 (64%)]	Loss: 2.169656
Train Epoch: 1 [51200/60000 (85%)]	Loss: 1.561276

Test set: Average loss: 0.0163, Accuracy: 6698/10000 (67%)

Train Epoch: 2 [0/60000 (0%)]	Loss: 0.993218
Train Epoch: 2 [12800/60000 (21%)]	Loss: 0.859608
Train Epoch: 2 [25600/60000 (43%)]	Loss: 0.499748
Train Epoch: 2 [38400/60000 (64%)]	Loss: 0.422055
Train Epoch: 2 [51200/60000 (85%)]	Loss: 0.413933

Test set: Average loss: 0.0065, Accuracy: 8797/10000 (88%)

Train Epoch: 3 [0/60000 (0%)]	Loss: 0.465154
Train Epoch: 3 [12800/60000 (21%)]	Loss: 0.321842
Train Epoch: 3 [25600/60000 (43%)]	Loss: 0.187147
Train Epoch: 3 [38400/60000 (64%)]	Loss: 0.469552
Train Epoch: 3 [51200/60000 (85%)]	Loss: 0.270332

Test set: Average loss: 0.0045, Accuracy: 9137/10000 (91%)

Train Epoch: 4 [0/60000 (0%)]	Loss: 0.197497
Train Epoch: 4 [12800/60000 (21%)]	Loss: 0.234830
Train Epoch: 4 [25600/60000 (43%)]	Loss: 0.260302
Train Epoch: 4 [38400/60000 (64%)]	Loss: 0.219375
Train Epoch: 4 [51200/60000 (85%)]	Loss: 0.292754

Test set: Average loss: 0.0037, Accuracy: 9277/10000 (93%)

Train Epoch: 5 [0/60000 (0%)]	Loss: 0.183354
Train Epoch: 5 [12800/60000 (21%)]	Loss: 0.207930
Train Epoch: 5 [25600/60000 (43%)]	Loss: 0.138435
Train Epoch: 5 [38400/60000 (64%)]	Loss: 0.120214
Train Epoch: 5 [51200/60000 (85%)]	Loss: 0.266199

Test set: Average loss: 0.0026, Accuracy: 9506/10000 (95%)
Process finished with exit code 0

随着训练迭代次数的增加,测试集的精确度还是有很大提高的。并且当迭代次数为5时,使用这种简单的网络可以达到95%的精确度。

以上这篇PyTorch: Softmax多分类实战操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Python tkinter实现日期选择器

    Python tkinter实现日期选择器

    这篇文章主要为大家详细介绍了Python tkinter实现日期选择器,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-02-02
  • Python代码部署的三种加密方案

    Python代码部署的三种加密方案

    本文主要介绍了Python代码部署的三种加密方案,主要介绍了代码混淆、代码编译、代码打包这三种,具有一定的参考价值,感兴趣的可以了解一下
    2023-02-02
  • Python中文件读取与保存代码示例

    Python中文件读取与保存代码示例

    Python中保存文件是一项非常基本的任务,它允许我们将程序输出保存到磁盘上,以便以后使用或与他人共享,这篇文章主要给大家介绍了关于Python中文件读取与保存的相关资料,需要的朋友可以参考下
    2024-04-04
  • 一篇文章带你了解python标准库--random模块

    一篇文章带你了解python标准库--random模块

    这篇文章主要给大家介绍了关于Python中random模块常用方法的使用教程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-08-08
  • python实现聚类算法原理

    python实现聚类算法原理

    这篇文章主要为大家详细介绍了python实现聚类算法原理,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-02-02
  • python使用ddddocr库识别滑动验证码简单代码示例

    python使用ddddocr库识别滑动验证码简单代码示例

    这篇文章主要介绍了如何使用ddddocr库来识别滑块验证码,并提供了一个示例代码和识别结果,同时提醒注意ddddocr库的大小限制,可能会影响某些无服务器函数的部署,需要的朋友可以参考下
    2024-11-11
  • Python利用pywin32实现自动操作电脑

    Python利用pywin32实现自动操作电脑

    在windows系统上,重复性的操作可以用Python脚本来完成,其中常用的模块是win32gui、win32con、win32api,要使用这三个模块需要先安装pywin32。本文就为大家介绍了如何利用这些模块实现自动操作电脑,感兴趣的可以了解一下
    2022-11-11
  • python和JavaScript哪个容易上手

    python和JavaScript哪个容易上手

    在本篇文章里小编给大家分享的是一篇关于python和JavaScript哪个容易上手的相关知识点文章,有兴趣的朋友们可以学习下。
    2020-06-06
  • Python之PyUnit单元测试实例

    Python之PyUnit单元测试实例

    这篇文章主要介绍了Python之PyUnit单元测试实例,是非常实用的技巧,需要的朋友可以参考下
    2014-10-10
  • Python利用PyPDF2库实现轻松提取PDF文本

    Python利用PyPDF2库实现轻松提取PDF文本

    ython中的PyPDF2库是一个非常有用的工具,无论您是需要分析PDF文档中的内容还是需要在文档中搜索特定的信息,PyPDF2都可以帮助您轻松实现这些任务,下面我们就来学习一下如何利用PyPDF2提取PDF文本吧
    2023-09-09

最新评论