matplotlib基础绘图命令之errorbar的使用

 更新时间:2020年08月13日 09:29:58   作者:weixin_43569478  
这篇文章主要介绍了matplotlib基础绘图命令之errorbar的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

在matplotlib中,errorbar方法用于绘制带误差线的折线图,基本用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1)

输出结果如下

yerr参数用于指定y轴水平的误差,同时该方法也支持x轴水平的误差,对应参数xerr。指定误差值有多种方式,上述代码展示的是指定一个统一标量的用法,此时,所以的点误差值都一样。

除此之外,还可以指定为一个和点的个数相同的数组,为每个点单独设置误差值,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=[1, 2, 3, 4])

输出结果如下

另外,考虑到每个点的上下误差会不同,也支持用行数为2的多维数组来单独指定每个点上下的误差值,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=[[1,2,3,4],[1, 2, 3, 4]])

输出结果如下

xerr参数的用法和yerr相同,这里不再赘述,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], xerr=1)

输出结果如下

errorbar方法支持同时指定xerr和yerr参数,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], xerr=0.5, yerr=0.5)

输出结果如下

对于误差图的样式,可以通过以下几个参数来个性化指定

1. fmt

fmt参数的值和plot方法中指定点的颜色,形状,线条风格的缩写方式相同,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co--')

上述代码同时指定了3个属性,输出结果如下

默认的图中只有线条这一元素,所以当我们指定了点的属性时,如果不指定线条的风格等属性,则对应的属性为空,线条元素不会显示,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co')

上述代码没有指定线条的风格,输出结果如下

再来看一个例子,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='c')

上述代码只指定了颜色属性,输出结果如下

2. ecolor

ecolor参数指定error bar的颜色,可以和折线的颜色加以区分,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='co--', ecolor='g')

输出结果如下

3. elinewidth

elinewidth参数指定error bar的线条宽度,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, fmt='ro-',ecolor='k',elinewidth=10)

输出结果如下

4. lims系列参数

lims系列参数用于控制误差线的显示,对于x轴水平的误差线而言,有以下两个参数

1. xuplims

2. xlolims

对于y轴水平的误差线而言,有以下两个参数

1. uplims

2. lolims

这四个参数默认的取值为False, 当取值为True时,对应方向的误差线不显示,同时在另外一个方向上的误差线上,会用箭头加以标识。

当uplims参数的值为True时,向上的误差线不显示,向下的误差线加箭头,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=True)

输出结果如下

当lolims参数的值为True时,向下的误差线不显示,向上的误差线加箭头,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, lolims=True)

输出结果如下

当uplims和lolims参数的值都为True时,双向的误差线都加箭头,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=True, lolims=True)

输出结果如下

除了指定为标量外,lims系列参数的值也可以是一个列表,为每个点单独设值,用法如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, uplims=[False, True, False, True], lolims=[True, False, True, False])

输出结果如下

不同的True和False的组合可以实现不同的效果,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=0.5, uplims=[True,True,False,False],lolims=[True,False,True,False])

输出结果如下

和xerr,yerr类似,我们也可以同时指定4个lims参数,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=0.5, uplims=[True,True,False,False],lolims=[True,False,True,False],xerr=0.5, xuplims=[True,False,True,False],xlolims=[True,True,False,False])

输出结果如下

5. errorevery

errorevery参数用于指定误差线的抽样频率,默认情况下,每个点的误差线都会显示,当点很多且密集分布时, 每个点都显示误差线的话,就很难看出有效的信息,比如下图

plt.errorbar(x=range(100), y=range(100),yerr=50)

过于密集的情况下,可以使用errorevery参数进行抽样,基本用法如下

plt.errorbar(x=range(100), y=range(100),yerr=50,errorevery=6)

上述代码表示从第一个点开始,每6个点画一个误差线,这样抽样之后,误差线就不那么密集了,输出结果如下

除了以上几个专属的基本参数外,还有很多的通用参数,可以对errorbar的样式进行精细调整,示例如下

plt.errorbar(x=[1, 2, 3, 4], y=[1, 2, 3, 4], yerr=1, marker='s', mfc='red', mec='green', ms=20, mew=4)

输出结果如下

errorbar的参数较多,熟练掌握常用的几个即可。

到此这篇关于matplotlib基础绘图命令之errorbar的使用的文章就介绍到这了,更多相关matplotlib errorbar内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用Python删除文本文件中特定行的操作方法

    使用Python删除文本文件中特定行的操作方法

    文件操作是编程中的重要方面,Python作为强大的编程语言,提供了处理文件的能力,删除特定行是文件处理中常见的需求,本文给大家介绍了Python快速删除文本文件中指定行的方法,文中有详细的代码示例供大家参考,需要的朋友可以参考下
    2023-12-12
  • celery异步定时任务订单定时回滚

    celery异步定时任务订单定时回滚

    这篇文章主要为大家介绍了celery异步定时任务订单定时回滚的实现示例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪
    2022-04-04
  • NumPy 数组使用大全

    NumPy 数组使用大全

    这篇文章主要介绍了NumPy 数组使用大全,在本教程中,你将学习如何在 NumPy 数组上以多种方式添加、删除、排序和操作元素。 文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-04-04
  • pytorch 多分类问题,计算百分比操作

    pytorch 多分类问题,计算百分比操作

    这篇文章主要介绍了pytorch 多分类问题,计算百分比操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • tensorflow 恢复指定层与不同层指定不同学习率的方法

    tensorflow 恢复指定层与不同层指定不同学习率的方法

    今天小编就为大家分享一篇tensorflow 恢复指定层与不同层指定不同学习率的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • 详解python的异常捕获

    详解python的异常捕获

    这篇文章主要为大家详细介绍了python的异常捕获,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-03-03
  • 对Python中type打开文件的方式介绍

    对Python中type打开文件的方式介绍

    下面小编就为大家介绍一下对Python中type打开文件的方式。具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-04-04
  • 关于Python中*args和**kwargs的深入理解

    关于Python中*args和**kwargs的深入理解

    这篇文章主要给大家介绍了关于Python中*args和**kwargs的相关资料,*args和**kwargs代表的是变量, 变量前面的 *(星号)才是必须的,也可以写成*v和**vs;写成*args和**kwargs只是一个常用的书写方式,需要的朋友可以参考下
    2021-08-08
  • 基于OpenCV和Gradio实现简单的人脸识别详解

    基于OpenCV和Gradio实现简单的人脸识别详解

    这篇文章主要为大家详细介绍了如何基于OpenCV和Gradio实现简单的人脸识别功能,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
    2023-04-04
  • 使用Pyhton集合set()实现成果查漏的例子

    使用Pyhton集合set()实现成果查漏的例子

    今天小编就为大家分享一篇使用Pyhton集合set()实现成果查漏的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-11-11

最新评论