Python中三维坐标空间绘制的实现

 更新时间:2020年09月22日 11:49:34   作者:余生若初  
这篇文章主要介绍了Python中三维坐标空间绘制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

在三维空间绘制点,线,面

1.绘制点

用scatter()散点绘制三维坐标点

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
dot1 = [[0, 0, 0], [1, 1, 1], [
  2, 2, 2], [2, 2, 3], [2, 2, 4]] # 得到五个点
plt.figure() # 得到画面
ax1 = plt.axes(projection='3d')
ax1.set_xlim(0, 5) # X轴,横向向右方向
ax1.set_ylim(5, 0) # Y轴,左向与X,Z轴互为垂直
ax1.set_zlim(0, 5) # 竖向为Z轴
color1 = ['r', 'g', 'b', 'k', 'm']
marker1 = ['o', 'v', '1', 's', 'H']
i = 0
for x in dot1:
  ax1.scatter(x[0], x[1], x[2], c=color1[i],
        marker=marker1[i], linewidths=4) # 用散点函数画点
  i += 1
plt.show()

在这里插入图片描述

2.绘制线

函数plot3D(xs, ys, *args, zdir=‘z', **kwargs),用于绘制三维坐标的线,其参数使用说明如下.
(1)xs,ys,zdir=‘z': 设置(x,y,z)坐标值,为集合对象,是该函数与plot()的唯一区别.
(2) kwargs:接受键值对参数,使用方法同plot()

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
plt.figure()
ax = plt.subplot(111, projection='3d')
ax.set_xlim(0, 20) # X轴,横向向右方向
ax.set_ylim(20, 0) # Y轴,左向与X,Z轴互为垂直
ax.set_zlim(0, 20) # 竖向为Z轴
z = np.linspace(0, 4*np.pi, 500)
x = 10*np.sin(z)
y = 10*np.cos(z)
ax.plot3D(x, y, z, 'black') # 绘制黑色空间曲线
# ----------------------------------------------------------
z1 = np.linspace(0, 4*np.pi, 500)
x1 = 5*np.sin(z1)
y1 = 5*np.cos(z1)
ax.plot3D(x1,y1,z1,'g--')   #绘制绿色空间虚曲线
#------------------------------------------------------------
ax.plot3D([0,18,0],[5,18,10],[0,5,0],'om-')  #绘制带o折线
plt.show()

在这里插入图片描述

3.绘制面

3D 图形需要的数据与等高线图基本相同:X、Y 数据决定坐标点,Z 轴数据决定 X、Y 坐标点对应的高度。与等高线图使用等高线来代表高度不同,3D 图形将会以更直观的形式来表示高度。
为了绘制 3D 图形,需要调用 Axes3D 对象的 plot_surface()方法来完成。

from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import numpy as np
fig = plt.figure(figsize=(15, 5))
ax = fig.add_subplot(131, projection='3d') # 第一个绘图区
x = np.arange(1, 50, 1)
y = np.arange(1, 50, 1)
X, Y = np.meshgrid(x, y) # 将坐标向量(x,y)变为坐标矩阵(X,Y)


def Z(X, Y): # 自定义求Z向量的函数
  return X*0.2+Y*0.3+20


s1 = ax.plot_surface(X, Y, Z(X, Y), rstride=10,
           cstride=10, cmap=cm.jet, linewidth=1,
          antialiased=True)  #绘制面
ax.set_xlim3d(0,50)  #指定x轴坐标值范围
ax.set_ylim3d(0,50)  #指定y轴坐标值范围
ax.set_zlim3d(0,50)  #指定z轴坐标值范围 
fig.colorbar(s1,shrink=1,aspect=5)  
#------------------------------------------
ax1 = fig.add_subplot(132,projection='3d')  #第二个绘图区
s2 = ax1.plot_surface(X,Y,Z(X,Y),rstride=1,
           cstride=1, cmap=cm.jet, linewidth=1,
          antialiased=False)  #绘制面
fig.colorbar(s2,shrink=0.5,aspect=5)
#--------------------------------------------
d = 0.05
x1 = np.arange(-4,4,d)
y1 = np.arange(-3,3,d)
X1,Y1 = np.meshgrid(x1,y1)
def Z1(X,Y):         #自定义求z向量的函数
  z1 = np.exp(-X**2-Y**2)
  z2 = np.exp(-(X-1)**2-(Y-1)**2)
  return (z2-z1)*2       #返回Z坐标值
ax2 = fig.add_subplot(133,projection='3d')
s3 = ax2.plot_surface(X,Y,Z(X,Y),rstride=1,
           cstride=1, cmap=cm.jet, linewidth=1,
          antialiased=False)
fig.colorbar(s3,shrink=0.5,aspect=5)
plt.show()

在这里插入图片描述

到此这篇关于Python中三维坐标空间绘制的实现的文章就介绍到这了,更多相关Python 三维坐标空间内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python 绘制斜率图进行对比分析

    python 绘制斜率图进行对比分析

    这篇文章主要介绍了python 绘制斜率图进行对比分析的实例,帮助大家更好的理解和学习使用python,感兴趣的朋友可以了解下
    2021-03-03
  • Python wxPython库消息对话框MessageDialog用法示例

    Python wxPython库消息对话框MessageDialog用法示例

    这篇文章主要介绍了Python wxPython库消息对话框MessageDialog用法,结合实例形式简单分析了wxPython库的基本事件与相关使用技巧,需要的朋友可以参考下
    2018-09-09
  • scrapy爬虫:scrapy.FormRequest中formdata参数详解

    scrapy爬虫:scrapy.FormRequest中formdata参数详解

    这篇文章主要介绍了scrapy爬虫:scrapy.FormRequest中formdata参数详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-04-04
  • 使用Python可设置抽奖者权重的抽奖脚本代码

    使用Python可设置抽奖者权重的抽奖脚本代码

    这篇文章主要介绍了Python可设置抽奖者权重的抽奖脚本,抽奖系统包含可给不同抽奖者设置不同的权重,先从价值高的奖品开始抽,已经中奖的人,不再参与后续的抽奖,本文通过实例代码给大家介绍的非常详细,需要的朋友可以参考下
    2022-11-11
  • python 2.7.14安装图文教程

    python 2.7.14安装图文教程

    这篇文章主要为大家详细介绍了python 2.7.14安装图文教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-04-04
  • Python matplotlib读取excel数据并用for循环画多个子图subplot操作

    Python matplotlib读取excel数据并用for循环画多个子图subplot操作

    这篇文章主要介绍了Python matplotlib读取excel数据并用for循环画多个子图subplot操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-07-07
  • python进程间数据交互的几种实现方式

    python进程间数据交互的几种实现方式

    本文主要介绍了python进程数据交互的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-05-05
  • python3使用SMTP发送简单文本邮件

    python3使用SMTP发送简单文本邮件

    这篇文章主要为大家详细介绍了python3使用SMTP发送简单文本邮件,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • pycharm中python解释器的配置方式

    pycharm中python解释器的配置方式

    这篇文章主要介绍了pycharm中python解释器的配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Python数据结构之树的全面解读

    Python数据结构之树的全面解读

    数据结构中有很多树的结构,其中包括二叉树、二叉搜索树、2-3树、红黑树等等。本文中对数据结构中常见的树逻辑结构和存储结构进行了汇总,不求严格精准,但求简单易懂
    2021-11-11

最新评论