Kmeans均值聚类算法原理以及Python如何实现

 更新时间:2020年09月26日 15:26:37   作者:Geeksongs  
这个算法中文名为k均值聚类算法,首先我们在二维的特殊条件下讨论其实现的过程,方便大家理解。

第一步.随机生成质心

由于这是一个无监督学习的算法,因此我们首先在一个二维的坐标轴下随机给定一堆点,并随即给定两个质心,我们这个算法的目的就是将这一堆点根据它们自身的坐标特征分为两类,因此选取了两个质心,什么时候这一堆点能够根据这两个质心分为两堆就对了。如下图所示:

第二步.根据距离进行分类

红色和蓝色的点代表了我们随机选取的质心。既然我们要让这一堆点的分为两堆,且让分好的每一堆点离其质心最近的话,我们首先先求出每一个点离质心的距离。假如说有一个点离红色的质心比例蓝色的质心更近,那么我们则将这个点归类为红色质心这一类,反之则归于蓝色质心这一类,如图所示:

第三步.求出同一类点的均值,更新质心位置

在这一步当中,我们将同一类点的x\y的值进行平均,求出所有点之和的平均值,这个值(x,y)则是我们新的质心的位置,如图所示:

我们可以看到,质心的位置已经发生了改变。

第四步.重复第二步,第三步

我们重复第二步和第三部的操作,不断求出点对质心的最小值之后进行分类,分类之后再更新质心的位置,直到得到迭代次数的上限(这个迭代次数是可以我们自己设定的,比如10000次),或者在做了n次迭代之后,最后两次迭代质心的位置已经保持不变,如下图所示:

这个时候我们就将这一堆点按照它们的特征在没有监督的条件下,分成了两类了!!

五.如果面对多个特征确定的一个点的情况,又该如何实现聚类呢?

首先我们引入一个概念,那就是欧式距离,欧式距离是这样定义的,很容易理解:

很显然,欧式距离d(xi,xj)等于我们每一个点的特征去减去另一个点在该维度下的距离的平方和再开根号,十分容易理解。

我们也可以用另一种方式来理解kmeans算法,那就是使某一个点的和另一些点的方差做到最小则实现了聚类,如下图所示:

得解!

六:代码实现

我们现在使用Python语言来实现这个kmeans均值算法,首先我们先导入一个名叫make_blobs的数据集datasets,然后分别使用两个变量X,和y进行接收。X表示我们得到的数据,y表示这个数据应该被分类到的是哪一个类别当中,当然在我们实际的数据当中不会告诉我们哪个数据分在了哪一个类别当中,只会有X当中数据。在这里写代码的时候比较特殊,make_blobs库要求我们必须接受这两个参数,不能够只接受X这个数据参数,代码如下

plt.figure(figsize=(15,15))#规定我们绘图的大小为12*12

X, y=make_blobs(n_samples=1600,random_state=170)#一共取用1600个sample,同时状态设定为随机
#不知道这个状态随机是什么意思,只能查有关这个库的官方文档,同时这个数据集规定了是具备三个数据中心,也就是三个簇
y_pred=KMeans(n_clusters=3,random_state=170).fit_predict(X)

plt.subplot(221)#表示四个方格当中的第一格
plt.scatter(X[:,0],X[:,1],c=y_pred)#表示数据的第0个和第1个维度,同时数据的colour与predict的结果有关
plt.title("The result of the Kmeans")

plt.subplot(222)#表示四个方格当中的第一格
plt.scatter(X[:,0],X[:,1],c=y)
plt.title("The Real result of the Kmeans")

array=np.array([[0.60834549,-0.63667341],[-0.40887178,-0.85253229]])
lashen=np.dot(X,array)
y_pred=KMeans(n_clusters=3,random_state=170).fit_predict(lashen)

plt.subplot(223)#表示四个方格当中的第一格
plt.scatter(lashen[:,0],lashen[:,1],c=y_pred)#表示数据的第0个和第1个维度,同时数据的colour与predict的结果有关
plt.title("The Real result of the tranfored data")

我们在使用scatter函数进行绘图的时候会根据我们数据结的形状来编写相应的代码,这里我们所拿到的X数据集的行数是我们所指定的1600行,因为我们一共拿到了1600个数据,每一个数据仅有两个特征,也就是在XY轴当中的坐标,因此X是一个二维的ndarray对象(X是numpy当中的ndarray对象),我们可以打印出来看看这个数据的构成,如下图所示:

同时我们也可以看到y也是ndarray对象,由于我们在采集数据的时候仅仅接受了3个簇,make_blobs默认接受的是三个簇(或称cluster)的缘故,因此最后y的值只有0,1,2这三种可能。我们通过matplotlib绘图,绘制出我们分类的结果图,也就是上述代码的运行结果如下:

以上就是Kmeans均值聚类算法原理以及Python如何实现的详细内容,更多关于Kmeans均值聚类算法的资料请关注脚本之家其它相关文章!

相关文章

  • Python计算任意多边形间的重叠面积的示例代码

    Python计算任意多边形间的重叠面积的示例代码

    最近有个作业,给定的数据为多边形的各个顶点,为N*2的矩阵,N 为多边形的顶点个数,计算任意两个多边形重叠面积计算,本文就来详细的介绍一下
    2021-08-08
  • Python3.8中如何使用print打印变量

    Python3.8中如何使用print打印变量

    这篇文章主要介绍了Python3.8中如何使用print打印变量问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-11-11
  • Python 3.x 判断 dict 是否包含某键值的实例讲解

    Python 3.x 判断 dict 是否包含某键值的实例讲解

    今天小编就为大家分享一篇Python 3.x 判断 dict 是否包含某键值的实例讲解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python实现查找二叉搜索树第k大的节点功能示例

    Python实现查找二叉搜索树第k大的节点功能示例

    这篇文章主要介绍了Python实现查找二叉搜索树第k大的节点功能,结合实例形式分析了Python二叉搜索树的定义、查找、遍历等相关操作技巧,需要的朋友可以参考下
    2019-01-01
  • 安装出现:Requirement already satisfied解决办法

    安装出现:Requirement already satisfied解决办法

    最近pip install的时候报错,一大串Requirement already satisfied,所以下面这篇文章主要给大家介绍了关于安装出现:Requirement already satisfied的解决办法,需要的朋友可以参考下
    2022-08-08
  • Python3爬楼梯算法示例

    Python3爬楼梯算法示例

    这篇文章主要介绍了Python3爬楼梯算法,涉及Python基于面向对象的字符串遍历、切片、运算等相关操作技巧,需要的朋友可以参考下
    2019-03-03
  • python中使用urllib2伪造HTTP报头的2个方法

    python中使用urllib2伪造HTTP报头的2个方法

    这篇文章主要介绍了python中使用urllib2伪造HTTP报头的2个方法,即伪造http头信息,需要的朋友可以参考下
    2014-07-07
  • 使用Python与MQTT实现异步通信功能

    使用Python与MQTT实现异步通信功能

    物联网(IoT)和实时通信的世界中,消息队列遥测传输(MQTT)协议因其轻量级、可靠性和实时性成为广受欢迎的选择,本文给大家介绍了使用Python与MQTT实现异步通信功能,需要的朋友可以参考下
    2024-12-12
  • Python实现获取汉字偏旁部首的方法示例【测试可用】

    Python实现获取汉字偏旁部首的方法示例【测试可用】

    这篇文章主要介绍了Python实现获取汉字偏旁部首的方法,涉及Python基于第三方模块进行汉字处理的相关操作技巧,需要的朋友可以参考下
    2018-12-12
  • Python抖音无水印视频下载方法

    Python抖音无水印视频下载方法

    这篇文章主要介绍了用Python下载抖音无水印视频的方法,本文通过图文实例代码相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-12-12

最新评论