python实现粒子群算法

 更新时间:2020年10月15日 09:49:54   作者:农大鲁迅  
这篇文章主要介绍了python如何实现粒子群算法,帮助大家更好的进行机器学习,感兴趣的朋友可以了解下

粒子群算法

粒子群算法源于复杂适应系统(Complex Adaptive System,CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

PSO初始化为一群随机粒子(随机解)。然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个“极值”(pbest,gbest)来更新自己。
在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

i 表示第 i 个粒子, d 表示粒子的第 d 个维度。r1, r2 表示两个位于 [0, 1] 的随机数(对于一个粒子的不同维度,r1, r2 的值不同)。pbest[i] 是指粒子取得最高(低)适应度时的位置,gbest[i] 指的是整个系统取得最高(低)适应度时的位置。

实践

我们用 PSO 算法求解如下函数的最小值

可以在空间画出图像

下图是使用 5 个粒子的收敛情况

可以看到,fitness 在第 12 轮就几乎收敛到 -10.0。

下面是完整代码

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


INF = 1e5

def plot_cost_func():
  """画出适应度函数"""
  fig = plt.figure()
  ax = Axes3D(fig)
  X = np.arange(-4, 4, 0.25)
  Y = np.arange(-4, 4, 0.25)
  X, Y = np.meshgrid(X, Y)
  Z = (X**2 + Y**2) - 10
  ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
  plt.show()

def fitness(x):
  return x[0]**2 + x[1]**2 - 10

class PSOSolver(object):
  def __init__(self, n_iter, weight=0.5, c1=2, c2=2, n_particle=5):
    self.n_iter = n_iter
    self.weight = weight
    self.c1 = c1
    self.c2 = c2
    self.n_particle = n_particle
    self.gbest = np.random.rand(2)
    # gbest 对应的函数值
    self.gbest_fit = fitness(self.gbest)
    # 将位置初始化到 [-5, 5]
    self.location = 10 * np.random.rand(n_particle, 2) - 5
    # 将速度初始化到 [-1, 1]
    self.velocity = 2 * np.random.rand(n_particle, 2) - 1
    self.pbest_fit = np.tile(INF, n_particle)
    self.pbest = np.zeros((n_particle, 2))
    # 记录每一步的最优值
    self.best_fitness = []
  
  def new_velocity(self, i):
    r = np.random.rand(2, 2)
    v = self.velocity[i]
    x = self.location[i]
    pbest = self.pbest[i]
    return self.weight * v + self.c1 * r[0] * (pbest - x) + \
        self.c2 * r[1] * (self.gbest - x)

  def solve(self):
    for it in range(self.n_iter):
      for i in range(self.n_particle):
        v = self.new_velocity(i)
        x = self.location[i] + v
        fit_i = fitness(x)
        if fit_i < self.pbest_fit[i]:
          self.pbest_fit[i] = fit_i
          self.pbest[i] = x
          if fit_i < self.gbest_fit:
            self.gbest_fit = fit_i
            self.gbest = x
        self.velocity[i] = v
        self.location[i] = x
      self.best_fitness.append(self.gbest_fit)

  
if __name__ == '__main__':
  plot_cost_func()
  n_iter = 20
  s = PSOSolver(n_iter)
  s.solve()
  print(s.gbest_fit)
  plt.title("Fitness Curve")
  plt.xlabel("iter")
  plt.ylabel("fitness")
  plt.plot(np.arange(n_iter), np.array(s.best_fitness))
  plt.show()

以上就是python实现粒子群算法的详细内容,更多关于python 粒子群算法的资料请关注脚本之家其它相关文章!

相关文章

  • 浅析Python 3 字符串中的 STR 和 Bytes 有什么区别

    浅析Python 3 字符串中的 STR 和 Bytes 有什么区别

    Python2的str相当于Python3的Bytes,而Unicode相当于Python3的Bytes。这篇文章主要介绍了Python 3 字符串中的 STR 和 Bytes 究竟有什么区别?需要的朋友可以参考下
    2018-10-10
  • python如何使用腾讯云发送短信

    python如何使用腾讯云发送短信

    这篇文章主要介绍了python如何使用腾讯云发送短信,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下
    2020-09-09
  • Python工具脚本调用外层模块的操作方法

    Python工具脚本调用外层模块的操作方法

    今天有同学问我,这种情况应该怎么调用,才能让remove_outdated_data.py正确导入models里面的模块,下面通过本文介绍下Python工具脚本调用外层模块的方法,感兴趣的朋友一起看看吧
    2024-02-02
  • Empty test suite.(PyCharm程序运行错误的解决方法)

    Empty test suite.(PyCharm程序运行错误的解决方法)

    今天小编就为大家分享一篇Empty test suite.(PyCharm程序运行错误的解决方法),具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • pyqt5 实现在别的窗口弹出进度条

    pyqt5 实现在别的窗口弹出进度条

    今天小编就为大家分享一篇pyqt5 实现在别的窗口弹出进度条,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-06-06
  • Python实现微信好友数据爬取及分析

    Python实现微信好友数据爬取及分析

    这篇文章会基于Python对微信好友进行数据分析,这里选择的维度主要有:性别、头像、签名、位置,主要采用图表和词云两种形式来呈现结果,其中,对文本类信息会采用词频分析和情感分析两种方法,感兴趣的小伙伴可以了解一下
    2021-12-12
  • Python极值整数的边界探讨分析

    Python极值整数的边界探讨分析

    这篇文章主要介绍了Python极值整数的边界探讨分析,阅读本文来一起领略Python中的极值,看一下Python整数是否有边界,有需要的朋友可以借鉴参考下
    2021-09-09
  • python实现测试工具(一)——命令行发送get请求

    python实现测试工具(一)——命令行发送get请求

    这篇文章主要介绍了python如何实现命令行发送get请求,帮助大家更好的利用python进行测试工作,感兴趣的朋友可以了解下
    2020-10-10
  • Python开发自定义Web框架的示例详解

    Python开发自定义Web框架的示例详解

    这篇文章主要为大家详细介绍了python如何开发自定义的web框架,我文中示例代码讲解详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-07-07
  • 解决pycharm回车之后不能换行或不能缩进的问题

    解决pycharm回车之后不能换行或不能缩进的问题

    今天小编就为大家分享一篇解决pycharm回车之后不能换行或不能缩进的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-01-01

最新评论