Python进行特征提取的示例代码

 更新时间:2020年10月15日 15:00:12   作者:陆勤_数据人网  
这篇文章主要介绍了Python进行特征提取的示例代码,帮助大家更好的进行数据分析,感兴趣的朋友可以了解下
#过滤式特征选择
#根据方差进行选择,方差越小,代表该属性识别能力很差,可以剔除
from sklearn.feature_selection import VarianceThreshold
x=[[100,1,2,3],
  [100,4,5,6],
  [100,7,8,9],
  [101,11,12,13]]
selector=VarianceThreshold(1) #方差阈值值,
selector.fit(x)
selector.variances_ #展现属性的方差
selector.transform(x)#进行特征选择
selector.get_support(True) #选择结果后,特征之前的索引
selector.inverse_transform(selector.transform(x)) #将特征选择后的结果还原成原始数据
                         #被剔除掉的数据,显示为0
                         
#单变量特征选择
from sklearn.feature_selection import SelectKBest,f_classif
x=[[1,2,3,4,5],
  [5,4,3,2,1],
  [3,3,3,3,3],
  [1,1,1,1,1]]
y=[0,1,0,1]
selector=SelectKBest(score_func=f_classif,k=3)#选择3个特征,指标使用的是方差分析F值
selector.fit(x,y)
selector.scores_ #每一个特征的得分
selector.pvalues_
selector.get_support(True) #如果为true,则返回被选出的特征下标,如果选择False,则
              #返回的是一个布尔值组成的数组,该数组只是那些特征被选择
selector.transform(x)
 
 
#包裹时特征选择
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC #选择svm作为评定算法
from sklearn.datasets import load_iris #加载数据集
iris=load_iris()
x=iris.data
y=iris.target
estimator=LinearSVC()
selector=RFE(estimator=estimator,n_features_to_select=2) #选择2个特征
selector.fit(x,y)
selector.n_features_  #给出被选出的特征的数量
selector.support_   #给出了被选择特征的mask
selector.ranking_   #特征排名,被选出特征的排名为1
 
#注意:特征提取对于预测性能的提升没有必然的联系,接下来进行比较;
from sklearn.feature_selection import RFE
from sklearn.svm import LinearSVC
from sklearn import cross_validation
from sklearn.datasets import load_iris
 
#加载数据
iris=load_iris()
X=iris.data
y=iris.target
#特征提取
estimator=LinearSVC()
selector=RFE(estimator=estimator,n_features_to_select=2)
X_t=selector.fit_transform(X,y)
#切分测试集与验证集
x_train,x_test,y_train,y_test=cross_validation.train_test_split(X,y,
                  test_size=0.25,random_state=0,stratify=y)
x_train_t,x_test_t,y_train_t,y_test_t=cross_validation.train_test_split(X_t,y,
                  test_size=0.25,random_state=0,stratify=y)
 
 
clf=LinearSVC()
clf_t=LinearSVC()
clf.fit(x_train,y_train)
clf_t.fit(x_train_t,y_train_t)
print('origin dataset test score:',clf.score(x_test,y_test))
#origin dataset test score: 0.973684210526
print('selected Dataset:test score:',clf_t.score(x_test_t,y_test_t))
#selected Dataset:test score: 0.947368421053
 
import numpy as np
from sklearn.feature_selection import RFECV
from sklearn.svm import LinearSVC
from sklearn.datasets import load_iris
iris=load_iris()
x=iris.data
y=iris.target
estimator=LinearSVC()
selector=RFECV(estimator=estimator,cv=3)
selector.fit(x,y)
selector.n_features_
selector.support_
selector.ranking_
selector.grid_scores_

#嵌入式特征选择
import numpy as np
from sklearn.feature_selection import SelectFromModel
from sklearn.svm import LinearSVC
from sklearn.datasets import load_digits
digits=load_digits()
x=digits.data
y=digits.target
estimator=LinearSVC(penalty='l1',dual=False)
selector=SelectFromModel(estimator=estimator,threshold='mean')
selector.fit(x,y)
selector.transform(x)
selector.threshold_
selector.get_support(indices=True)
 
#scikitlearn提供了Pipeline来讲多个学习器组成流水线,通常流水线的形式为:将数据标准化,
#--》特征提取的学习器————》执行预测的学习器,除了最后一个学习器之后,
#前面的所有学习器必须提供transform方法,该方法用于数据转化(如归一化、正则化、
#以及特征提取
#学习器流水线(pipeline)
from sklearn.svm import LinearSVC
from sklearn.datasets import load_digits
from sklearn import cross_validation
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import Pipeline
def test_Pipeline(data):
  x_train,x_test,y_train,y_test=data
  steps=[('linear_svm',LinearSVC(C=1,penalty='l1',dual=False)),
      ('logisticregression',LogisticRegression(C=1))]
  pipeline=Pipeline(steps)
  pipeline.fit(x_train,y_train)
  print('named steps',pipeline.named_steps)
  print('pipeline score',pipeline.score(x_test,y_test))
  
if __name__=='__main__':
  data=load_digits()
  x=data.data
  y=data.target
  test_Pipeline(cross_validation.train_test_split(x,y,test_size=0.25,
                  random_state=0,stratify=y))

以上就是Python进行特征提取的示例代码的详细内容,更多关于Python 特征提取的资料请关注脚本之家其它相关文章!

相关文章

  • Python中创建二维数组

    Python中创建二维数组

    今天小编就为大家分享一篇关于Python中创建二维数组,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2018-10-10
  • Python实现简单图像缩放与旋转

    Python实现简单图像缩放与旋转

    大家好,本篇文章主要讲的是Python实现简单图像缩放与旋转,感兴趣的同学赶快来看一看吧,对你有帮助的话记得收藏一下
    2022-01-01
  • 在VScode里面添加Python解释器的详细步骤

    在VScode里面添加Python解释器的详细步骤

    VScode编辑器在安装好Python插件之后会自动选择环境变量中排序最高的那一个解释器作为默认解释器,而想要额外添加新的Python解释器就需要自己设置,接下来通过本文给大家分享VScode添加Python解释器的方法,感兴趣的朋友一起看看吧
    2023-02-02
  • Python读写JSON文件的操作详解

    Python读写JSON文件的操作详解

    JSON数据类型最常用的应用场景就是API或将数据保存到 .json稳当数据中。使用Python处理这些数据会变得非常简单,本文将详细讲解Python如何读写JSON文件的,需要的可以参考一下
    2022-04-04
  • Python tkinter实现日期选择器

    Python tkinter实现日期选择器

    这篇文章主要为大家详细介绍了Python tkinter实现日期选择器,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-02-02
  • Django + Uwsgi + Nginx 实现生产环境部署的方法

    Django + Uwsgi + Nginx 实现生产环境部署的方法

    Django的部署可以有很多方式,采用nginx+uwsgi的方式是其中比较常见的一种方式。这篇文章主要介绍了Django + Uwsgi + Nginx 实现生产环境部署,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • 实例解析Python的Twisted框架中Deferred对象的用法

    实例解析Python的Twisted框架中Deferred对象的用法

    Deferred对象在Twsited框架中用于处理回调,这对于依靠异步的Twisted来说十分重要,接下来我们就以实例解析Python的Twisted框架中Deferred对象的用法
    2016-05-05
  • pycharm显示远程图片的实现

    pycharm显示远程图片的实现

    这篇文章主要介绍了pycharm显示远程图片的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-11-11
  • python神经网络tensorflow利用训练好的模型进行预测

    python神经网络tensorflow利用训练好的模型进行预测

    这篇文章主要为大家介绍了python神经网络tensorflow利用训练好的模型进行预测,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • pandas中query()用法小结

    pandas中query()用法小结

    query()方法是一个功能强大的函数,允许用户通过字符串表达式来筛选DataFrame中的数据,本文就来介绍一下pandas中query()用法,感兴趣的可以了解一下
    2024-03-03

最新评论