OpenCV实现机器人对物体进行移动跟随的方法实例

 更新时间:2020年11月09日 10:37:20   作者:Arcann  
这篇文章主要给大家介绍了关于OpenCV实现机器人对物体进行移动跟随的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.物体识别

本案例实现对特殊颜色物体的识别,并实现根据物体位置的改变进行控制跟随。

import cv2 as cv

# 定义结构元素
kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
# print kernel

capture = cv.VideoCapture(0)		
print capture.isOpened()
ok, frame = capture.read()
lower_b = (65, 43, 46)
upper_b = (110, 255, 255)

height, width = frame.shape[0:2]
screen_center = width / 2
offset = 50

while ok:
 # 将图像转成HSV颜色空间
 hsv_frame = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
 # 基于颜色的物体提取
 mask = cv.inRange(hsv_frame, lower_b, upper_b)
 mask2 = cv.morphologyEx(mask, cv.MORPH_OPEN, kernel)
 mask3 = cv.morphologyEx(mask2, cv.MORPH_CLOSE, kernel)
 
 # 找出面积最大的区域
 _, contours, _ = cv.findContours(mask3, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)

 maxArea = 0
 maxIndex = 0
 for i, c in enumerate(contours):
 area = cv.contourArea(c)
 if area > maxArea:
 maxArea = area
 maxIndex = i
	# 绘制
 cv.drawContours(frame, contours, maxIndex, (255, 255, 0), 2)
 # 获取外切矩形
 x, y, w, h = cv.boundingRect(contours[maxIndex])
 cv.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
 # 获取中心像素点
 center_x = int(x + w/2)
 center_y = int(y + h/2)
 cv.circle(frame, (center_x, center_y), 5, (0, 0, 255), -1)

 # 简单的打印反馈数据,之后补充运动控制
 if center_x < screen_center - offset:
 print "turn left"
 elif screen_center - offset <= center_x <= screen_center + offset:
 print "keep"
 elif center_x > screen_center + offset:
 print "turn right"

 cv.imshow("mask4", mask3)
 cv.imshow("frame", frame)
 cv.waitKey(1)
 ok, frame = capture.read()

实际效果图

2.移动跟随

结合ROS控制turtlebot3或其他机器人运动,turtlebot3机器人的教程见我另一个博文:ROS控制Turtlebot3

首先启动turtlebot3,如下代码可以放在机器人的树莓派中,将相机插在USB口即可

代码示例:

import rospy
import cv2 as cv
from geometry_msgs.msg import Twist


def shutdown():
 twist = Twist()
 twist.linear.x = 0
 twist.angular.z = 0
 cmd_vel_Publisher.publish(twist)
 print "stop"


if __name__ == '__main__':
 rospy.init_node("follow_node")
 rospy.on_shutdown(shutdown)
 rate = rospy.Rate(100)

 cmd_vel_Publisher = rospy.Publisher("/cmd_vel", Twist, queue_size=1)
 # 定义结构元素
 kernel = cv.getStructuringElement(cv.MORPH_RECT, (3, 3))
 # print kernel

 capture = cv.VideoCapture(0)
 print capture.isOpened()
 ok, frame = capture.read()
 lower_b = (65, 43, 46)
 upper_b = (110, 255, 255)

 height, width = frame.shape[0:2]
 screen_center = width / 2
 offset = 50

 while not rospy.is_shutdown():
 # 将图像转成HSV颜色空间
 hsv_frame = cv.cvtColor(frame, cv.COLOR_BGR2HSV)
 # 基于颜色的物体提取
 mask = cv.inRange(hsv_frame, lower_b, upper_b)
 mask2 = cv.morphologyEx(mask, cv.MORPH_OPEN, kernel)
 mask3 = cv.morphologyEx(mask2, cv.MORPH_CLOSE, kernel)

 # 找出面积最大的区域
 _, contours, _ = cv.findContours(mask3, cv.RETR_EXTERNAL, cv.CHAIN_APPROX_SIMPLE)

 maxArea = 0
 maxIndex = 0
 for i, c in enumerate(contours):
 area = cv.contourArea(c)
 if area > maxArea:
 maxArea = area
 maxIndex = i
 # 绘制
 cv.drawContours(frame, contours, maxIndex, (255, 255, 0), 2)
 # 获取外切矩形
 x, y, w, h = cv.boundingRect(contours[maxIndex])
 cv.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
 # 获取中心像素点
 center_x = int(x + w / 2)
 center_y = int(y + h / 2)
 cv.circle(frame, (center_x, center_y), 5, (0, 0, 255), -1)

 # 简单的打印反馈数据,之后补充运动控制
 twist = Twist()
 if center_x < screen_center - offset:
 twist.linear.x = 0.1
 twist.angular.z = 0.5
 print "turn left"
 elif screen_center - offset <= center_x <= screen_center + offset:
 twist.linear.x = 0.3
 twist.angular.z = 0
 print "keep"
 elif center_x > screen_center + offset:
 twist.linear.x = 0.1
 twist.angular.z = -0.5
 print "turn right"
 else:
 twist.linear.x = 0
 twist.angular.z = 0
 print "stop"

 # 将速度发出
 cmd_vel_Publisher.publish(twist)

 # cv.imshow("mask4", mask3)
 # cv.imshow("frame", frame)
 cv.waitKey(1)
 rate.sleep()
 ok, frame = capture.read()

总结

到此这篇关于OpenCV实现机器人对物体进行移动跟随的文章就介绍到这了,更多相关OpenCV机器人对物体移动跟随内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python实现抖音视频批量下载

    python实现抖音视频批量下载

    这篇文章主要为大家详细介绍了python实现抖音视频批量下载,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-06-06
  • Python基础中的的if-else语句详解

    Python基础中的的if-else语句详解

    这篇文章主要为大家详细介绍了Python基础中的的if-else语句,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下,希望能够给你带来帮助
    2022-02-02
  • Python turtle编写简单的球类小游戏

    Python turtle编写简单的球类小游戏

    turtle (小海龟) 是 Python 内置的一个绘图模块,其实它不仅可以用来绘图,还可以制作简单的小游戏。本文将利用Turtle制作一个简单的球类小游戏,感兴趣的可以学习一下
    2022-03-03
  • python搜索算法原理及实例讲解

    python搜索算法原理及实例讲解

    在本篇内容里小编给大家分享了一篇关于python搜索算法原理及实例讲解内容,有兴趣的朋友们可以学习下。
    2020-11-11
  • Python3.6 中的pyinstaller安装和使用教程

    Python3.6 中的pyinstaller安装和使用教程

    这篇文章主要介绍了Python3.6 中的pyinstaller安装和使用的教程,本文给大家介绍的非常详细,对大家的工作或学习具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-03-03
  • python 负数取模运算实例

    python 负数取模运算实例

    这篇文章主要介绍了python 负数取模运算实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-06-06
  • Python实现GUI学生信息管理系统

    Python实现GUI学生信息管理系统

    这篇文章主要为大家详细介绍了Python实现GUI学生信息管理系统,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的

    Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的

    这篇文章主要介绍了Tensorflow tf.nn.depthwise_conv2d如何实现深度卷积的,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • Python+PIL实现批量在图片上写上自定义文本

    Python+PIL实现批量在图片上写上自定义文本

    Pillow 是一个 Python 的图像处理库,它是 Python Imaging Library (PIL) 的一个分支,并且增加了更多的功能,下面我们看看如何利用它实现批量在图片上写上自定义的文本吧
    2024-11-11
  • Python函数中的不定长参数相关知识总结

    Python函数中的不定长参数相关知识总结

    今天给大家带来的是关于Python函数的相关知识,文章围绕着Python不定长参数展开,文中有非常详细的介绍及代码示例,需要的朋友可以参考下
    2021-06-06

最新评论