使用Python爬取Json数据的示例代码

 更新时间:2020年12月07日 15:27:06   作者:pengjunlee  
这篇文章主要介绍了使用Python爬取Json数据的示例代码,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

一年一度的双十一即将来临,临时接到了一个任务:统计某品牌数据银行中自己品牌分别在2017和2018的10月20日至10月31日之间不同时间段的AIPL(“认知”(Aware)、“兴趣”(Interest)、“购买”(Purchase)、“忠诚”(Loyalty))流转率。

使用Fiddler获取到目标地址为:

https://databank.yushanfang.com/api/ecapi?path=/databank/crowdFullLink/flowInfo&fromCrowdId=3312&beginTheDate=20181020&endTheDate=20181031&toCrowdIdList[0]=3312&toCrowdIdList[1]=3313&toCrowdIdList[2]=3314&toCrowdIdList[3]=3315

本文中以爬取其中的AI流转率数据为例。

该地址返回的响应内容为Json类型,其中红框标记的项即为AI流转率值:

实现代码如下:

import requests
import json
import csv
 
# 爬虫地址
url = 'https://databank.yushanfang.com/api/ecapi?path=/databank/crowdFullLink/flowInfo&fromCrowdId=3312&beginTheDate=201810{}&endTheDate=201810{}&toCrowdIdList[0]=3312&toCrowdIdList[1]=3313&toCrowdIdList[2]=3314&toCrowdIdList[3]=3315'
 
# 携带cookie进行访问
headers = {
'Host':'databank.yushanfang.com',
'Referer':'https://databank.yushanfang.com/',
'Connection':'keep-alive',
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Safari/537.36',
'Cookie':'_tb_token_=iNkDeJLdM3MgvKjhsfdW; bs_n_lang=zh_CN; cna=aaj1EViI7x0CATo9kTKvjzgS; ck2=072de851f1c02d5c7bac555f64c5c66d; c_token=c74594b486f8de731e2608cb9526a3f2; an=5YWo5qOJ5pe25Luj5a6Y5pa55peX6Iiw5bqXOnpmeA%3D%3D; lg=true; sg=\"=19\"; lvc=sAhojs49PcqHQQ%3D%3D; isg=BPT0Md7dE_ic5Ie3Oa85RxaMxbLK3UqJMMiN6o5VjH8C-ZRDtt7aRXb3fXGEAVAP',
}
 
rows = []
for n in range(20, 31):
  row = []
  row.append(n)
  for m in range (21, 32):
    if m < n + 1:
      row.append("")
    else:
      
      # 格式化请求地址,更换请求参数
      reqUrl = url.format(n, m)
      
      # 打印本次请求地址
      print(url)
      
      # 发送请求,获取响应结果
      response = requests.get(url=reqUrl, headers=headers, verify=False)
      text = response.text
      
      # 打印本次请求响应内容
      print(text)
      
      # 将响应内容转换为Json对象
      jsonobj = json.loads(text)
      
      # 从Json对象获取想要的内容
      toCntPercent = jsonobj['data']['interCrowdInfo'][1]['toCntPercent']
      
      # 生成行数据
      row.append(str(toCntPercent)+"%")
      
  # 保存行数据    
  rows.append(row)
  
# 生成Excel表头
header = ['AI流转率', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31']
 
# 将表头数据和爬虫数据导出到Excel文件
with open('D:\\res\\pachong\\tmall.csv', 'w', encoding='gb18030') as f :
  f_csv = csv.writer(f)
  f_csv.writerow(header)
  f_csv.writerows(rows)
import csv
import json
import ssl
import urllib.request
 
# 爬虫地址
url = 'https://databank.yushanfang.com/api/ecapi?path=/databank/crowdFullLink/flowInfo&fromCrowdId=3312&beginTheDate=201810{}&endTheDate=201810{}&toCrowdIdList[0]=3312&toCrowdIdList[1]=3313&toCrowdIdList[2]=3314&toCrowdIdList[3]=3315'
 
# 不校验证书
ssl._create_default_https_context = ssl._create_unverified_context
 
# 携带cookie进行访问
headers = {
'Host':'databank.yushanfang.com',
'Referer':'https://databank.yushanfang.com/',
'Connection':'keep-alive',
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84 Safari/537.36',
'Cookie':'_tb_token_=iNkDeJLdM3MgvKjhsfdW; bs_n_lang=zh_CN; cna=aaj1EViI7x0CATo9kTKvjzgS; ck2=072de851f1c02d5c7bac555f64c5c66d; c_token=c74594b486f8de731e2608cb9526a3f2; an=5YWo5qOJ5pe25Luj5a6Y5pa55peX6Iiw5bqXOnpmeA%3D%3D; lg=true; sg=\"=19\"; lvc=sAhojs49PcqHQQ%3D%3D; isg=BPT0Md7dE_ic5Ie3Oa85RxaMxbLK3UqJMMiN6o5VjH8C-ZRDtt7aRXb3fXGEAVAP',
}
 
rows = []
n = 20
while n <31:
  row = []
  row.append(n)
  
  m =21
  while m <32:
    
    if m < n + 1:
      row.append("")
    else:
      
      # 格式化请求地址,更换请求参数
      reqUrl = url.format(n, m)
      
      # 打印本次请求地址
      print(reqUrl)
      
      # 发送请求,获取响应结果
      request = urllib.request.Request(url=reqUrl, headers=headers)
      response = urllib.request.urlopen(request)
      text = response.read().decode('utf8')
      
      # 打印本次请求响应内容
      print(text)
      
      # 将响应内容转换为Json对象
      jsonobj = json.loads(text)
      
      # 从Json对象获取想要的内容
      toCntPercent = jsonobj['data']['interCrowdInfo'][1]['toCntPercent']
      
      # 生成行数据
      row.append(str(toCntPercent) + "%")
      
    m = m+1
    
  rows.append(row)    
  n = n+1
  
# 生成Excel表头
header = ['AI流转率', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30', '31']
 
# 将表头数据和爬虫数据导出到Excel文件
with open('D:\\res\\pachong\\tmall.csv', 'w', encoding='gb18030') as f :
  f_csv = csv.writer(f)
  f_csv.writerow(header)
  f_csv.writerows(rows)

导出内容如下:

到此这篇关于使用Python爬取Json数据的文章就介绍到这了,更多相关Python爬取Json数据内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python绘制漏斗图步骤详解

    python绘制漏斗图步骤详解

    在本文里我们给大家整理了关于python绘制漏斗图的相关知识点以及具体步骤,有需要的朋友们跟着学习下。
    2019-03-03
  • Python如何在bool函数中取值

    Python如何在bool函数中取值

    这篇文章主要介绍了Python如何在bool函数中取值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09
  • Python中的迭代器漫谈

    Python中的迭代器漫谈

    这篇文章主要介绍了Python中的迭代器漫谈,本文主要讲解range函数和xrange函数性能区别,需要的朋友可以参考下
    2015-02-02
  • python字符串格式化(%格式符和format方式)

    python字符串格式化(%格式符和format方式)

    在编写程序的过程中,经常需要进行格式化输出,每次用每次查,干脆就在这里整理一下,下面这篇文章主要给大家介绍了关于python字符串格式化的相关资料,分别是%格式符和format方式,需要的朋友可以参考下
    2022-02-02
  • Python导入txt数据到mysql的方法

    Python导入txt数据到mysql的方法

    这篇文章主要介绍了Python导入txt数据到mysql的方法,涉及Python操作txt文件及mysql数据库的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-04-04
  • pydantic进阶用法示例详解

    pydantic进阶用法示例详解

    这篇文章主要为大家介绍了pydantic进阶用法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-03-03
  • python动态视频下载器的实现方法

    python动态视频下载器的实现方法

    这里向大家分享一下python爬虫的一些应用,主要是用爬虫配合简单的GUI界面实现视频,音乐和小说的下载器。今天就先介绍如何实现一个动态视频下载器,需要的朋友可以参考下
    2019-09-09
  • Python爬虫回测股票的实例讲解

    Python爬虫回测股票的实例讲解

    在本篇文章里小编给大家整理的是一篇关于Python爬虫回测股票的实例讲解内容,有兴趣的朋友们可以学习下。
    2021-01-01
  • python中的对数log函数表示及用法

    python中的对数log函数表示及用法

    在本篇文章里小编给大家整理了一篇关于python中的对数log函数表示及用法,有需要的朋友们可以学习下。
    2020-12-12
  • Python中的数据类dataclass解读

    Python中的数据类dataclass解读

    这篇文章主要介绍了Python中的数据类dataclass使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-01-01

最新评论