详解Go语言的context包从放弃到入门

 更新时间:2020年12月09日 14:37:03   作者:雪山飞猪  
这篇文章主要介绍了Go语言的context包从放弃到入门,本文通过实例演示给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

一、Context包到底是干嘛用的

我们会在用到很多东西的时候都看到context的影子,比如gin框架,比如grpc,这东西到底是做啥的?
大家都在用,没几个知道这是干嘛的,知其然而不知其所以然,

谁都在CRUD,谁都觉得if else就完了,有代码能copy我也行,原理啥啥不懂不重要,反正就是一把梭

原理说白了就是:

  • 当前协程取消了,可以通知所有由它创建的子协程退出
  • 当前协程取消了,不会影响到创建它的父级协程的状态
  • 扩展了额外的功能:超时取消、定时取消、可以给子协程共享数据

二、主协程退出通知子协程示例演示

主协程通知子协程退出

如下代码展示了,通过一个叫done的channel通道达到了这样的效果

package main

import (
 "fmt"
 "time"
)

func main() {
 done := make(chan string)

 //缓冲通道预先放置10个消息
 messages := make(chan int, 10)
 defer close(messages)
 for i := 0; i < 10; i++ {
  messages <- i
 }
 //启动3个子协程消费messages消息
 for i := 1; i <= 3; i++ {
  go child(i, done, messages)
 }

 time.Sleep(3 * time.Second) //等待子协程接收一半的消息
 close(done) //结束前通知子协程
 time.Sleep(2 * time.Second) //等待所有的子协程输出
 fmt.Println("主协程结束")
}

//从messages通道获取信息,当收到结束信号的时候不再接收
func child(i int, done <-chan string, messages <-chan int) {
Consume:
 for {
  time.Sleep(1 * time.Second)
  select {
  case <-done:
   fmt.Printf("[%d]被主协程通知结束...\n", i)
   break Consume
  default:
   fmt.Printf("[%d]接收消息: %d\n", i, <-messages)
  }
 }
}

运行结束如下

这里,我们用一个channel的关闭做到了通知所有的消费到一半的子协程退出。
问题来了,如果子协程又要启动它的子协程,这可咋整?

主协程通知有子协程,子协程又有多个子协程

这是可哲学问题,我们还是得建立一个叫done的channel来监测
下面演示一下这种操作,再在每个child方法里启动多个job,如下

全量代码贴出来

package main

import (
 "fmt"
 "time"
)

func main() {
 done := make(chan string)

 //缓冲通道预先放置10个消息
 messages := make(chan int, 10)
 defer close(messages)
 for i := 0; i < 10; i++ {
  messages <- i
 }
 //启动3个子协程消费messages消息
 for i := 1; i <= 3; i++ {
  go child(i, done, messages)
 }

 time.Sleep(3 * time.Second) //等待子协程接收一半的消息
 close(done) //结束前通知子协程
 time.Sleep(2 * time.Second) //等待所有的子协程输出
 fmt.Println("主协程结束")
}

//从messages通道获取信息,当收到结束信号的时候不再接收
func child(i int, done <-chan string, messages <-chan int) {
 newDone := make(chan string)
 defer close(newDone)
 go childJob(i, "a", newDone)
 go childJob(i, "b", newDone)

Consume:
 for {
  time.Sleep(1 * time.Second)
  select {
  case <-done:
   fmt.Printf("[%d]被主协程通知结束...\n", i)
   break Consume
  default:
   fmt.Printf("[%d]接收消息: %d\n", i, <-messages)
  }
 }
}

//任务
func childJob(parent int, name string, done <-chan string) {
 for {
  time.Sleep(1 * time.Second)
  select {
  case <-done:
   fmt.Printf("[%d-%v]被结束...\n", parent, name)
   return
  default:
   fmt.Printf("[%d-%v]执行\n", parent, name)
  }
 }
}

运行结果如下

问题来了,如果job里再启动自己的goroutine,这样没完没了的建立done的通道有点恶心,这时候context包就来了!

我们先把上面的代码改成context包的方式

package main

import (
 "context"
 "fmt"
 "time"
)

func main() {
 ctx, cancel := context.WithCancel(context.Background())
 //缓冲通道预先放置10个消息
 messages := make(chan int, 10)
 defer close(messages)
 for i := 0; i < 10; i++ {
  messages <- i
 }
 //启动3个子协程消费messages消息
 for i := 1; i <= 3; i++ {
  go child(i, ctx, messages)
 }
 time.Sleep(3 * time.Second) //等待子协程接收一半的消息
 cancel() //结束前通知子协程
 time.Sleep(2 * time.Second) //等待所有的子协程输出
 fmt.Println("主协程结束")
}

//从messages通道获取信息,当收到结束信号的时候不再接收
func child(i int, ctx context.Context, messages <-chan int) {
 //基于父级的context建立context
 newCtx, _ := context.WithCancel(ctx)
 go childJob(i, "a", newCtx)
 go childJob(i, "b", newCtx)

Consume:
 for {
  time.Sleep(1 * time.Second)
  select {
  case <-ctx.Done():
   fmt.Printf("[%d]被主协程通知结束...\n", i)
   break Consume
  default:
   fmt.Printf("[%d]接收消息: %d\n", i, <-messages)
  }
 }
}

//任务
func childJob(parent int, name string, ctx context.Context) {
 for {
  time.Sleep(1 * time.Second)
  select {
  case <-ctx.Done():
   fmt.Printf("[%d-%v]被结束...\n", parent, name)
   return
  default:
   fmt.Printf("[%d-%v]执行\n", parent, name)
  }
 }
}

运行结果如下

可以看到,改成context包还是顺利的通过子协程退出了
主要修改了几个地方,再ctx向下传递

基于上层context再构建当前层级的context

监听context的退出信号,

这就是context包的核心原理,链式传递context,基于context构造新的context

三、Context包的核心接口和方法

更多资料可以查看:Go 语言设计与实现

context接口

context是一个接口,主要包含以下4个方法

  • Deadline

返回当前context任务被取消的时间,没有设定返回ok返回false

  • Done

当绑定当前的context任务被取消时,将返回一个关闭的channel

  • Err

Done返回的channel没有关闭,返回nil;

Done返回的channel已经关闭,返回非空值表示任务结束的原因;

context被取消,返回Canceled。

context超时,DeadlineExceeded

  • Value

返回context

存储的键

emptyCtx结构体

实现了context接口,emptyCtx没有超时时间,不能取消,也不能存储额外信息,所以emptyCtx用来做根节点,一般用Background和TODO来初始化emptyCtx

Backgroud

通常用于主函数,初始化以及测试,作为顶层的context

TODO

不确定使用什么用context的时候才会使用

valueCtx结构体

type valueCtx struct{ Context key, val interface{} }

valueCtx利用Context的变量来表示父节点context,所以当前context继承了父context的所有信息
valueCtx还可以存储键值。

Value

func (c *valueCtx) Value(key interface{}) interface{} {
 if c.key == key {
  return c.val
 }
 return c.Context.Value(key)
}

可以用来获取当前context和所有的父节点存储的key

如果当前的context不存在需要的key,会沿着context链向上寻找key对应的值,直到根节点

WithValue

可以向context添加键值

func WithValue(parent Context, key, val interface{}) Context {
 if key == nil {
  panic("nil key")
 }
 if !reflect.TypeOf(key).Comparable() {
  panic("key is not comparable")
 }
 return &valueCtx{parent, key, val}
}

添加键值会返回创建一个新的valueCtx子节点

cancelCtx结构体

type cancelCtx struct {
 Context
 mu sync.Mutex
 done chan struct{}
 children map[canceler]struct{}
 err error
}
type canceler interface {
 cancel(removeFromParent bool, err error)
 Done() <-chan struct{}
}

和valueCtx类似,有一个context做为父节点,
变量done表示一个channel,用来表示传递关闭;
children表示一个map,存储了当前context节点为下的子节点
err用来存储错误信息表示任务结束的原因

WithCancel

用来创建一个可取消的context,返回一个context和一个CancelFunc,调用CancelFunc可以触发cancel操作。

timerCtx结构体

timerCtx是基于cancelCtx的context精英,是一种可以定时取消的context,过期时间的deadline不晚于所设置的时间d

WithDeadline

返回一个基于parent的可取消的context,并且过期时间deadline不晚于所设置时间d

WithTimeout

创建一个定时取消context,和WithDeadline差不多,WithTimeout是相对时间

四、总结核心原理

  • Done方法返回一个channel
  • 外部通过调用<-channel监听cancel方法
  • cancel方法会调用close(channel)

当调用close方法的时间,所有的channel再次从通道获取内容,会返回零值和false

res,ok := <-done:
  • 过期自动取消,使用了time.AfterFunc方法,到时调用cancel方法
 c.timer = time.AfterFunc(dur, func() {
 c.cancel(true, DeadlineExceeded)
 })

授人以渔不如授人以渔,知其然也知其所以然,让我们共同构建美丽新世界,让人与自然更加和谐,就是这样,giao~

到此这篇关于Go语言的context包从放弃到入门的文章就介绍到这了,更多相关Go语言context包入门内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Gin框架使用panic处理中间件问题详解

    Gin框架使用panic处理中间件问题详解

    这篇文章主要介绍了Gin框架使用panic处理中间件问题,在 Gin 框架中,错误处理和 panic 处理是非常重要的功能。当处理 HTTP 请求时,可能会出现各种各样的错误,例如数据库连接错误、网络错误、权限问题等等
    2023-04-04
  • Go语言实现权重抽奖系统的项目实践

    Go语言实现权重抽奖系统的项目实践

    本文主要介绍了Go语言实现权重抽奖系统的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2025-04-04
  • 使用Go语言进行条件编译的示例代码

    使用Go语言进行条件编译的示例代码

    Go的条件编译主要通过构建标签(build tags)和构建约束(build constraints)来实现,这些标签和约束可以让我们针对不同的操作系统、架构或特定条件编写特定代码,本文给大家介绍了如何使用Go语言进行条件编译,需要的朋友可以参考下
    2024-06-06
  • golang 生成定单号的操作

    golang 生成定单号的操作

    这篇文章主要介绍了golang 生成定单号的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • Go语言使用select{}阻塞main函数介绍

    Go语言使用select{}阻塞main函数介绍

    这篇文章主要介绍了Go语言使用select{}阻塞main函数介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04
  • go语言接口之接口值举例详解

    go语言接口之接口值举例详解

    接口是一种抽象类型,是对其他类型行为的概括与抽象,从语法角度来看,接口是一组方法定义的集合,下面这篇文章主要给大家介绍了关于go语言接口之接口值的相关资料,文章通过代码介绍的非常详细,需要的朋友可以参考下
    2024-06-06
  • golang方法中receiver为指针与不为指针的区别详析

    golang方法中receiver为指针与不为指针的区别详析

    这篇文章主要给大家介绍了关于golang方法中receiver为指针与不为指针区别的相关资料,其实最大的区别应该是指针传递的是对像的引用,文中通过示例代码介绍的非常详细,需要的朋友可以参考借鉴,下面来一起看看吧。
    2017-10-10
  • Go设计模式之策略模式讲解和代码示例

    Go设计模式之策略模式讲解和代码示例

    策略是一种行为设计模式, 它将一组行为转换为对象, 并使其在原始上下文对象内部能够相互替换,本文就将通过代码示例给大家详细的介绍一下Go的策略模式,需要的朋友可以参考下
    2023-08-08
  • golang xorm 自定义日志记录器之使用zap实现日志输出、切割日志(最新)

    golang xorm 自定义日志记录器之使用zap实现日志输出、切割日志(最新)

    这篇文章主要介绍了golang xorm 自定义日志记录器,使用zap实现日志输出、切割日志,包括连接postgresql数据库的操作方法及 zap日志工具 ,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-10-10
  • GoLang channel底层代码实现详解

    GoLang channel底层代码实现详解

    Channel和goroutine的结合是Go并发编程的大杀器。而Channel的实际应用也经常让人眼前一亮,通过与select,cancel,timer等结合,它能实现各种各样的功能。接下来,我们就要梳理一下GoLang channel底层代码实现
    2022-10-10

最新评论