Python利用imshow制作自定义渐变填充柱状图(colorbar)

 更新时间:2020年12月10日 11:50:29   作者:晚亭听铃  
这篇文章主要介绍了Python利用imshow制作自定义渐变填充柱状图(colorbar),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

目的

在各种各样的理论计算中,常常需要绘制各种填充图,绘制完后需要加渐变填充的colorbar。可是有些软件如VMD,colorbar渲染后颜色分布有些失真,不能较准确的表达各颜色对应的数值。用ps中的渐变填充可以解决该问题,但很多电脑配置较低,不能很好的运行ps。Python也可以直接绘制colorbar,填充颜色就好。如cmap中的bwr渐变本人就比较常用。然而,有时候颜色范围是负数范围多于正数范围(如:colorbar需要表示 [-60,40]这段,蓝色表示负数,红色表示正数,白色应该在colorbar由下往上60%处),bwr渐变将white置于50%处显得不够合理,因此需要自定义填充。本文以imshow() 函数来进行填充柱状图达到自定义colorbar的目的。interpolation=‘bicubic' 可以很好的做出渐变效果。

代码

# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020

@author: fya
"""

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl

fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False) #创建图像范围

a = np.array([[1, 1],
       [2, 2],
       [3, 3],
       [4, 4],
       [5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
print(a.shape)

clist=['white','blue'] #线性变化颜色由上面array值 小到大,越小,越白,达到上白下蓝的渐变效果
clist2=['red','white'] #渐变色2,用于白色到红色填充,array越小,越红,达到上红下白的效果
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)


plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))#60%都是蓝色到白色渐变
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处

frame = plt.gca() #读取当前图层
ax.yaxis.tick_right() #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要


plt.show()
fig.savefig('colorbar.tif',dpi=600,format='tif')
print('Done!')

#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)

#width = 0.4
#for x, y in zip(x, y):
  #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)

#ax.set_aspect('auto')
#plt.show()

代码2,渐变色分100段

# -*- coding: utf-8 -*-
"""
Created on Wed Dec 9 10:36:54 2020

@author: fanyiang
"""

import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import ListedColormap,LinearSegmentedColormap
import matplotlib as mpl
import pandas as pd
import os

fig, ax = plt.subplots(dpi=96)
ax.set(xlim=(1,10), ylim=(-0.1,101), autoscale_on=False)

#a = np.array([[1, 1],
       #[2, 2],
       #[3, 3],
       #[4, 4],
       #[5, 5]]) #每种渐变色分成五段(array五行),数字表示在colormap对应的深浅
avalue=locals() 
dfvalue=locals()      
for i in range(1,101):
  avalue['a'+str(i)]=np.array([[i,i]]) #渐变色分为100段,分的更细
  dfvalue['df'+str(i)]=pd.DataFrame(avalue['a'+str(i)]) #转dataframe
  df=dfvalue['df'+str(i)]
  df.to_csv("temp.csv", mode='a',header=None) #暂存csv文件,第一列会把每一次循环的index放进去
df3=pd.read_csv('temp.csv',header=None)#读取csv
df3.columns=['序号','x','y']#column命名,第一列废弃
df3=df3.drop('序号',axis=1)#删除第一列
a=np.array(df3) #转array
print(df3.head())

                                                                      
                                                                  
#a=np.vstack((a1,a2,a3,a4,a5,a6,a7,a8,a9,a10))

print(a)

clist=['white','blue'] #线性变化颜色由上面array值 小到大
clist2=['red','white']
newcmp = LinearSegmentedColormap.from_list('chaos',clist)
newcmp2 = LinearSegmentedColormap.from_list('chaos',clist2)


plt.imshow(a,cmap=newcmp,interpolation='bicubic',extent=(1,10,0,60))
plt.imshow(a,cmap=newcmp2,interpolation='bicubic',extent=(1,10,60,100)) #白色设置在60%处

frame = plt.gca() #读取当前图层
ax.yaxis.tick_right() #纵坐标移到右边
ax.set_yticklabels(('-80','-60','-40','-20','0','20','40')) #自定义yticks显示的值,第一个label不显示
frame.spines['top'].set_visible(False) #上框线不显示
frame.spines['bottom'].set_visible(False)
frame.spines['right'].set_visible(False)
frame.spines['left'].set_visible(False)
plt.xticks([]) #x坐标不要


plt.show()
fig.savefig('colorbar.tif',dpi=600,format='tif')
os.remove("temp.csv") #删除临时的csv文件
print('Done!')

#N = 10
#x = np.arange(N) + 0.15
#y = np.random.rand(N)

#width = 0.4
#for x, y in zip(x, y):
  #ax.imshow(a, interpolation='bicubic', extent=(x, x+width, 0, y), cmap=plt.cm.Blues_r)

#ax.set_aspect('auto')
#plt.show()

效果

效果1

在这里插入图片描述

效果2

在这里插入图片描述

到此这篇关于Python利用imshow制作自定义渐变填充柱状图(colorbar)的文章就介绍到这了,更多相关Python 渐变填充柱状图内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 使用Python实现两组数据纵向排序

    使用Python实现两组数据纵向排序

    在数据处理和分析中,排序是一项非常基础且重要的操作,本文将详细介绍如何使用Python对两组数据进行纵向排序,即每一列分别进行排序,同时保持数据的对应关系,需要的可以参考下
    2024-12-12
  • python内存管理机制原理详解

    python内存管理机制原理详解

    这篇文章主要介绍了python内存管理机制原理详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-08-08
  • 使用Python在Word中插入图片并文字环绕的方法

    使用Python在Word中插入图片并文字环绕的方法

    在Word文档中插入图片能够提供更直观的信息,插入图片时,我们还可以调整图片大小,以及设置合适的文字环绕方式,本文将提供两种使用Python在Word文档中插入图片并设置文字环绕的方法,需要的朋友可以参考下
    2024-06-06
  • Python使用pypinyin实现中文拼音转换

    Python使用pypinyin实现中文拼音转换

    pypinyin是一个Python库,用于将中文汉字转换为拼音,这篇文章主要为大家详细介绍了pypinyin的基本用法并探讨其应用场景,需要的可以参考下
    2024-02-02
  • 使用GPT-3训练垃圾短信分类器示例详解

    使用GPT-3训练垃圾短信分类器示例详解

    这篇文章主要为大家介绍了使用GPT-3训练垃圾短信分类器示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-02-02
  • Python实现批量压缩图片

    Python实现批量压缩图片

    这篇文章主要为大家详细介绍了Python实现批量压缩图片的方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-01-01
  • python如何绘制登陆时的卫星云图(TBB)

    python如何绘制登陆时的卫星云图(TBB)

    这篇文章主要介绍了python如何绘制登陆时的卫星云图(TBB),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • 微信跳一跳python辅助脚本(总结)

    微信跳一跳python辅助脚本(总结)

    本篇文章为大家整理了关于微信跳一跳的辅助脚本内容,这次我们给大家整理的是关于python的脚本内容,一起来学习下。
    2018-01-01
  • python实现文本界面网络聊天室

    python实现文本界面网络聊天室

    这篇文章主要为大家详细介绍了python实现文本界面网络聊天室,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-12-12
  • python实现查找两个字符串中相同字符并输出的方法

    python实现查找两个字符串中相同字符并输出的方法

    这篇文章主要介绍了python实现查找两个字符串中相同字符并输出的方法,涉及Python针对字符串操作的相关技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-07-07

最新评论