python opencv肤色检测的实现示例

 更新时间:2020年12月21日 14:14:32   作者:George593  
这篇文章主要介绍了python opencv肤色检测的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1 椭圆肤色检测模型

原理:将RGB图像转换到YCRCB空间,肤色像素点会聚集到一个椭圆区域。先定义一个椭圆模型,然后将每个RGB像素点转换到YCRCB空间比对是否再椭圆区域,是的话判断为皮肤。

YCRCB颜色空间

椭圆模型

代码

def ellipse_detect(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  skinCrCbHist = np.zeros((256,256), dtype= np.uint8 )
  cv2.ellipse(skinCrCbHist ,(113,155),(23,15),43,0, 360, (255,255,255),-1)
 
  YCRCB = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
  (y,cr,cb)= cv2.split(YCRCB)
  skin = np.zeros(cr.shape, dtype=np.uint8)
  (x,y)= cr.shape
  for i in range(0,x):
    for j in range(0,y):
      CR= YCRCB[i,j,1]
      CB= YCRCB[i,j,2]
      if skinCrCbHist [CR,CB]>0:
        skin[i,j]= 255
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  dst = cv2.bitwise_and(img,img,mask= skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout",dst)
  cv2.waitKey()

效果

2 YCrCb颜色空间的Cr分量+Otsu法阈值分割算法

原理

针对YCRCB中CR分量的处理,将RGB转换为YCRCB,对CR通道单独进行otsu处理,otsu方法opencv里用threshold

代码

def cr_otsu(image):
  """YCrCb颜色空间的Cr分量+Otsu阈值分割
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image, cv2.IMREAD_COLOR)
  ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
 
  (y, cr, cb) = cv2.split(ycrcb)
  cr1 = cv2.GaussianBlur(cr, (5, 5), 0)
  _, skin = cv2.threshold(cr1,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
 
  cv2.namedWindow("image raw", cv2.WINDOW_NORMAL)
  cv2.imshow("image raw", img)
  cv2.namedWindow("image CR", cv2.WINDOW_NORMAL)
  cv2.imshow("image CR", cr1)
  cv2.namedWindow("Skin Cr+OTSU", cv2.WINDOW_NORMAL)
  cv2.imshow("Skin Cr+OTSU", skin)
 
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("seperate", cv2.WINDOW_NORMAL)
  cv2.imshow("seperate", dst)
  cv2.waitKey()

效果

3 基于YCrCb颜色空间Cr, Cb范围筛选法

 原理

类似于第二种方法,只不过是对CR和CB两个通道综合考虑

代码

def crcb_range_sceening(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB)
  (y,cr,cb)= cv2.split(ycrcb)
 
  skin = np.zeros(cr.shape,dtype= np.uint8)
  (x,y)= cr.shape
  for i in range(0,x):
    for j in range(0,y):
      if (cr[i][j]>140)and(cr[i][j])<175 and (cr[i][j]>100) and (cb[i][j])<120:
        skin[i][j]= 255
      else:
        skin[i][j] = 0
  cv2.namedWindow(image,cv2.WINDOW_NORMAL)
  cv2.imshow(image,img)
  cv2.namedWindow(image+"skin2 cr+cb",cv2.WINDOW_NORMAL)
  cv2.imshow(image+"skin2 cr+cb",skin)
 
  dst = cv2.bitwise_and(img,img,mask=skin)
  cv2.namedWindow("cutout",cv2.WINDOW_NORMAL)
  cv2.imshow("cutout",dst)
 
  cv2.waitKey()

效果

4 HSV颜色空间H,S,V范围筛选法

原理

还是转换空间然后每个通道设置一个阈值综合考虑,进行二值化操作。

代码

def hsv_detect(image):
  """
  :param image: 图片路径
  :return: None
  """
  img = cv2.imread(image,cv2.IMREAD_COLOR)
  hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
  (_h,_s,_v)= cv2.split(hsv)
  skin= np.zeros(_h.shape,dtype=np.uint8)
  (x,y)= _h.shape
 
  for i in range(0,x):
    for j in range(0,y):
      if(_h[i][j]>7) and (_h[i][j]<20) and (_s[i][j]>28) and (_s[i][j]<255) and (_v[i][j]>50 ) and (_v[i][j]<255):
        skin[i][j] = 255
      else:
        skin[i][j] = 0
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  cv2.namedWindow(image + "hsv", cv2.WINDOW_NORMAL)
  cv2.imshow(image + "hsv", skin)
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout", dst)
  cv2.waitKey()

效果

示例

import cv2
import numpy as np
 
 
def ellipse_detect(image):
  """
  :param image: img path
  :return: None
  """
  img = cv2.imread(image, cv2.IMREAD_COLOR)
  skinCrCbHist = np.zeros((256, 256), dtype=np.uint8)
  cv2.ellipse(skinCrCbHist, (113, 155), (23, 15), 43, 0, 360, (255, 255, 255), -1)
 
  YCRCB = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB)
  (y, cr, cb) = cv2.split(YCRCB)
  skin = np.zeros(cr.shape, dtype=np.uint8)
  (x, y) = cr.shape
  for i in range(0, x):
    for j in range(0, y):
      CR = YCRCB[i, j, 1]
      CB = YCRCB[i, j, 2]
      if skinCrCbHist[CR, CB] > 0:
        skin[i, j] = 255
  cv2.namedWindow(image, cv2.WINDOW_NORMAL)
  cv2.imshow(image, img)
  dst = cv2.bitwise_and(img, img, mask=skin)
  cv2.namedWindow("cutout", cv2.WINDOW_NORMAL)
  cv2.imshow("cutout", dst)
  cv2.waitKey()
 
 
 
if __name__ == '__main__':
  ellipse_detect('./test.png')

 到此这篇关于python opencv肤色检测的实现示例的文章就介绍到这了,更多相关opencv 肤色检测内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python样条插值的实现代码

    python样条插值的实现代码

    这篇文章主要为大家详细介绍了python样条插值的实现代码,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-12-12
  • PyTorch搭建一维线性回归模型(二)

    PyTorch搭建一维线性回归模型(二)

    这篇文章主要为大家详细介绍了PyTorch搭建一维线性回归模型,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-05-05
  • python中Genarator函数用法分析

    python中Genarator函数用法分析

    这篇文章主要介绍了python中Genarator函数用法,实例分析了Genarator函数的使用原理与相关技巧,需要的朋友可以参考下
    2015-04-04
  • Python基本数据类型及内置方法

    Python基本数据类型及内置方法

    这篇文章主要介绍了Python基本数据类型及内置方法,​ 数据类型是用来记录事物状态的,而事物的状态是不断变化的,下文围绕主题展开相关内容需要的小伙伴可以参考一下
    2022-04-04
  • python正则表达式对字符串的查找匹配

    python正则表达式对字符串的查找匹配

    正则表达式是一种文本模式,包括普通字符(例如,a 到 z 之间的字母)和特殊字符(称为“元字符”),下面这篇文章主要给大家介绍了关于python正则表达式对字符串的查找匹配的相关资料,需要的朋友可以参考下
    2022-09-09
  • Python数据结构之哈夫曼树定义与使用方法示例

    Python数据结构之哈夫曼树定义与使用方法示例

    这篇文章主要介绍了Python数据结构之哈夫曼树定义与使用方法,结合具体实例形式分析了Python哈夫曼树的原理、定义及简单使用方法,需要的朋友可以参考下
    2018-04-04
  • Python使用Pillow添加水印

    Python使用Pillow添加水印

    这篇文章主要为大家详细介绍了Python使用Pillow添加水印,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2022-05-05
  • Python学习之迭代器的使用教程详解

    Python学习之迭代器的使用教程详解

    迭代器是一种对象,该对象包含值的可计数数字。从技术上讲,在 Python 中,迭代器是实现迭代器协议的对象,它包含方法 iter() 和 next()。本文就来聊聊迭代器的具体使用吧
    2023-03-03
  • python异常中else的实例用法

    python异常中else的实例用法

    在本篇内容里小编给大家分享的是一篇关于python异常中else的实例用法,有兴趣的朋友们可以跟着学习下。
    2021-06-06
  • 使用Python中的greenlet包实现并发编程的入门教程

    使用Python中的greenlet包实现并发编程的入门教程

    这篇文章主要介绍了使用Python中的greenlet包实现并发编程的入门教程,Python由于GIL的存在并不能实现真正的多线程并发,greenlet可以做到一个相对的替换方案,需要的朋友可以参考下
    2015-04-04

最新评论