快速解决Golang Map 并发读写安全的问题

 更新时间:2020年12月23日 09:46:25   作者:追风2019  
这篇文章主要介绍了快速解决Golang Map 并发读写安全的问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

一、错误案例

package main
import (
	"fmt"
	"time"
)
var TestMap map[string]string
func init() {
	TestMap = make(map[string]string, 1)
}
func main() {
	for i := 0; i < 1000; i++ {
		go Write("aaa")
		go Read("aaa")
		go Write("bbb")
		go Read("bbb")
	}
	time.Sleep(5 * time.Second)
}
func Read(key string) {
	fmt.Println(TestMap[key])
}
func Write(key string) {
	TestMap[key] = key
}

上面代码执行大概率出现报错:fatal error: concurrent map writes

二、问题分析

网上关于 golang 编程中 map 并发读写相关的资料很多,但总是都说成 并发读写 造成上面的错误,到底是 并发读 还是 并发写 造成的,这个很多资料都没有说明。

我们把上面的案例分别在循环中注释 Read 和 Write 函数的调用,分别测试 并发读 和 并发写;

循环次数分别测试了 100、1 w、100 w 次,并发读操作绝对不会报上面的错,而并发写基本都会报错。

因此,这个错误主要原因是:map 并发写。

三、问题原因

为什么 map 并发写会导致这个错误? 网络上的相关文章也大都有说明。

因为 map 变量为 指针类型变量,并发写时,多个协程同时操作一个内存,类似于多线程操作同一个资源会发生竞争关系,共享资源会遭到破坏,因此golang 出于安全的考虑,抛出致命错误:fatal error: concurrent map writes。

四、解决方案

网上各路资料解决方案较多,主要思路是通过加锁保证每个协程同步操作内存。

github 上找到一个 concurrentMap 包,案例代码修改如下:

package main
import (
 "fmt"
 cmap "github.com/orcaman/concurrent-map"
 "time"
)
var TestMap cmap.ConcurrentMap
func init() {
 TestMap = cmap.New()
}
func main() {
 for i := 0; i < 100; i++ {
 go Write("aaa", "111")
 go Read("aaa")
 go Write("bbb", "222")
 go Read("bbb")
 }
 time.Sleep(5 * time.Second)
}
func Read(key string) {
 if v, ok := TestMap.Get(key); ok {
 fmt.Printf("键值为 %s 的值为:%s", key, v)
 } else {
 fmt.Printf("键值不存在")
 }
}
func Write(key string, value string) {
 TestMap.Set(key, value)
}

五、思考总结

因为我是以 PHP 打开的编程世界,PHP 语言只有单线程,且不涉及指针操作,变量类型也是弱变量,以 PHP 编程思维刚开始接触 Golang 时还比较容易上手,但越往后,语言的特性区别就体现得越来越明显,思维转变就越来越大,对我来说是打开了一个新世界。

像本文出现的错误案例,也是因为自己没有多线程编程的思维基础,导致对这种问题不敏感,还是花了蛮多时间理解的。希望对和我有相似学习路线的朋友提供到一些帮助。

补充:Golang Map并发处理机制(sync.Map)

Go语言中的Map在并发情况下,只读是线程安全的,同时读写线程不安全。

示例:

package main 
import (
 "fmt"
)
var m = make(map[int]int)
func main() {
 //写入操作
 i:=0
 go func() {
 for{
 i++
 m[1]=i
 }
 
 }()
 //读操作
 go func() {
 for{
 fmt.Println(m[1])
 }
 
 }()
 //无限循环,让并发程序在后台运行
 for {
 ;
 }
}

从以上示例可以看出,不断地对map进行读和写,会出现错误。主要原因是对map进行读和写发生了竞态问题。map内部会对这种并发操作进行检查并提前发现。

如果确实需要对map进行并发读写操作,可以采用加锁机制、channel同步机制,但这样性能并不高。

Go语言在1.9版本中提供了一种效率较高的并发安全的sync.Map。

sync.Map结构如下:

The zero Map is empty and ready for use. A Map must not be copied after first use.
type Map struct {
 mu Mutex
 misses int
}
 
// Load returns the value stored in the map for a key, or nil if no
// value is present.
// The ok result indicates whether value was found in the map.
func (m *Map) Load(key interface{}) (value interface{}, ok bool) { 
}
 
// Store sets the value for a key.
func (m *Map) Store(key, value interface{}) {
 
}
// LoadOrStore returns the existing value for the key if present.
// Otherwise, it stores and returns the given value.
// The loaded result is true if the value was loaded, false if stored.
func (m *Map) LoadOrStore(key, value interface{}) (actual interface{}, loaded bool) { 
}
 
// Delete deletes the value for a key.
func (m *Map) Delete(key interface{}) { 
} 
 
// Range calls f sequentially for each key and value present in the map.
// If f returns false, range stops the iteration.
//
// Range does not necessarily correspond to any consistent snapshot of the Map's
// contents: no key will be visited more than once, but if the value for any key
// is stored or deleted concurrently, Range may reflect any mapping for that key
// from any point during the Range call.
//
// Range may be O(N) with the number of elements in the map even if f returns
// false after a constant number of calls.
func (m *Map) Range(f func(key, value interface{}) bool) { 
}
 
func (m *Map) missLocked() {
 
}
 
func (m *Map) dirtyLocked() {
 
}

其实,sync.Map内部还是进行了加锁机制,不过进行了一定的优化。

sync.Map使用示例:

package main 
import (
 "fmt"
 "sync"
 "time"
)
 
var m1 sync.Map 
func main() {
 i := 0
 go func() {
 for {
 i++
 m1.Store(1, i)
 time.Sleep(1000)
 }
 }()
 go func() {
 for{
 time.Sleep(1000)
 fmt.Println(m1.Load(1))
 }
 
 }()
 for {
 ;
 }
}

成功运行效果如下:

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

  • Go语言通过反射实现获取各种类型变量的值

    Go语言通过反射实现获取各种类型变量的值

    反射是程序在运行期间获取变量的类型和值、或者执行变量的方法的能力,这篇文章主要为大家讲讲Go语言通过反射获取各种类型变量值的方法,需要的可以参考下
    2023-07-07
  • golang读取yaml文件的示例代码

    golang读取yaml文件的示例代码

    本文主要介绍了golang读取yaml文件的示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-09-09
  • golang如何通过viper读取config.yaml文件

    golang如何通过viper读取config.yaml文件

    这篇文章主要介绍了golang通过viper读取config.yaml文件,围绕golang读取config.yaml文件的相关资料展开详细内容,需要的小伙伴可以参考一下
    2022-03-03
  • Golang切片Slice功能操作详情

    Golang切片Slice功能操作详情

    这篇文章主要介绍了Golang切片功能操作详情,切片是一个拥有相同类型元素的可变长度的序列。它是基于数组类型做的一层封,切片是一个引用类型,它的内部结构包含地址、长度和容量
    2022-09-09
  • golang使用viper加载配置文件实现自动反序列化到结构

    golang使用viper加载配置文件实现自动反序列化到结构

    这篇文章主要为大家介绍了golang使用viper加载配置文件实现自动反序列化到结构示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-08-08
  • golang的串行处理和并行处理区别

    golang的串行处理和并行处理区别

    golang对比其它语言最大的优势就是并行计算(一个go就能实现并发),工作中经常遇到并发的场景, 本文主要介绍了golang的串行处理和并行处理,感兴趣的可以了解一下
    2021-07-07
  • Go中Channel发送和接收操作指南

    Go中Channel发送和接收操作指南

    在golang中channel属于较为核心的一个功能,尤其在go协程中,channel功能尤为重要,下面这篇文章主要给大家介绍了关于Go中Channel发送和接收操作的相关资料,需要的朋友可以参考下
    2021-08-08
  • 通过函数如何将golang float64 保留2位小数(方法汇总)

    通过函数如何将golang float64 保留2位小数(方法汇总)

    这篇文章主要介绍了通过函数将golang float64保留2位小数,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2023-08-08
  • Go并发与锁的两种方式该如何提效详解

    Go并发与锁的两种方式该如何提效详解

    如果没有锁,在我们的项目中,可能会存在多个goroutine同时操作一个资源(临界区),这种情况会发生竞态问题(数据竞态),下面这篇文章主要给大家介绍了关于Go并发与锁的两种方式该如何提效的相关资料,需要的朋友可以参考下
    2022-12-12
  • Golang优雅关闭channel的方法示例

    Golang优雅关闭channel的方法示例

    Goroutine和channel是Go在“并发”方面两个核心feature,下面这篇文章主要给大家介绍了关于Golang如何优雅关闭channel的相关资料,文中通过示例代码介绍的非常详细,需要的朋友可以参考解决,下面来一起看看吧。
    2017-11-11

最新评论