学会迭代器设计模式,帮你大幅提升python性能

 更新时间:2021年01月03日 11:50:15   作者:TechFlow2019  
这篇文章主要介绍了python 迭代器设计模式的相关资料,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下

大家好,我们的git专题已经更新结束了,所以开始继续给大家写一点设计模式的内容。

今天给大家介绍的设计模式非常简单,叫做iterator,也就是迭代器模式。迭代器是Python语言当中一个非常重要的内容,借助迭代器我们可以很方便地实现很多复杂的功能。在深度学习当中,数据的获取往往也是通过迭代器实现的。因此这部分的内容非常重要,推荐大家一定要掌握。

简单案例

在开始介绍设计模式之前,我们先来看一个简单的需求。假设现在我们需要根据传入的变量获取每周的前几天,比如说我们传入3返回的就是[Mon, Tue, Wed],我们传入5返回[Mon, Tue, Wed, Thu, Fri]。这个需求大家应该都能理解,非常非常简单。

如果用一个函数来实现的话,就是这样:

def return_days(n):
    week = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun']
    return week[:n]

你看三行代码就实现了,在这个问题场景当中这样写当然是没有问题。但假如我们把题目稍微变一变,这里的week不是一个固定的数据,而是从上游或者是某个文件当中读取的。这里的n也是一个很大的数,我们把这个函数改写成这样:

def get_data(n):
    data = []
    for i in range(n):
        data.append(get_from_upstream())
    return data

我们假设get_from_upstream这个函数当中实现了获取数据的具体逻辑,那么上面这一段函数有一个什么问题?

有些同学会说这没有问题啊,因为像是其他语言实现数据获取的时候也都是这么干的。的确,像是Java等语言可能都是这么干的。但是其他语言这么干没错,不代表Python这么干也没错。因为我们没有把Python的能力发挥到最大。

这里有两个问题,第一个问题是延迟,因为前面说了,n是一个很大的数。我们从上游获取数据,无论是通过网络还是文件读取,本质上都是IO操作,IO操作的延迟是非常大的。那么我们把这n条数据全部搜集完可能需要很长的时间,导致下游的漫长等待。第二个问题就是内存,因为我们存储了这n条数据一起返回的,如果n很大,对于内存的开销压力也很大,如果机器内存不够很有可能导致崩溃。

那怎么解决呢?

其实解决的方法很简单,如果对迭代器熟悉的话,会发现迭代器针对的恰恰是这两个问题。我们把上面的逻辑改写成迭代器实现即可,这也就是iterator模式。

iterator模式

iterator模式严格说起来其实只是迭代器的一种应用,它非常巧妙地将迭代器与匿名函数结合在一起,里面也没有太多的门道可以说,我们把刚才的代码改写一下,细节都在代码当中。

def get_data(n):
    for i in range(n):
  yield get_from_upstream()


data_10 = lambda: get_data(10)
data_100 = lambda: get_data(100)

# use
for d in data_10:
    print(d)

很简单吧,但可能你要问了,我们既然写出了get_data这个迭代器,那么我们使用的时候直接for d in get_data(10)这样用不就好了,为什么中间要用匿名函数包一层呢?

道理也很简单,如果这个数据是我们自己使用,当然是没必要中间包一层的。但如果我们是传给下游使用的话,对于下游来说它肯定是不希望考虑上游太多的细节的,越简单越好。所以我们直接丢一个包装好的迭代器过去,下游直接call即可。否则的话,下游还需要感知get_data这个函数传入的参数,显然是不够合理的。

以上就是学会迭代器设计模式,帮你大幅提升python性能的详细内容,更多关于python 迭代器设计模式的资料请关注脚本之家其它相关文章!

相关文章

  • pandas 实现 in 和 not in 的用法及使用心得

    pandas 实现 in 和 not in 的用法及使用心得

    pandas按条件筛选数据时,除了使用query()方法,还可以使用isin和对isin取反进行条件筛选,今天通过本文给大家介绍pandas 实现 in 和 not in 的用法及使用心得,感兴趣的朋友跟随小编一起看看吧
    2023-01-01
  • Python如何输出异常信息(行号)

    Python如何输出异常信息(行号)

    这篇文章主要介绍了Python如何输出异常信息(行号)问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • Python使用fastAPI如何实现一个流式传输接口

    Python使用fastAPI如何实现一个流式传输接口

    这篇文章主要介绍了Python使用fastAPI如何实现一个流式传输接口问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-06-06
  • django下创建多个app并设置urls方法

    django下创建多个app并设置urls方法

    在本篇文章里小编给大家分享的是一篇关于django下创建多个app并设置urls方法,需要的朋友们可以参考学习下。
    2020-08-08
  • Flask框架学习笔记之模板操作实例详解

    Flask框架学习笔记之模板操作实例详解

    这篇文章主要介绍了Flask框架学习笔记之模板操作,结合实例形式详细分析了flask框架模板引擎Jinja2的模板调用、模板继承相关原理与操作技巧,需要的朋友可以参考下
    2019-08-08
  • 不到40行代码用Python实现一个简单的推荐系统

    不到40行代码用Python实现一个简单的推荐系统

    这篇文章主要给大家介绍了如何利用不到40行python代码实现一个简单的推荐系统,文中通过示例代码介绍的非常详细,对大家学习或者使用Python具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
    2019-05-05
  • Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

    Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的

    这篇文章主要介绍了Tensorflow tf.nn.atrous_conv2d如何实现空洞卷积的,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-04-04
  • pytorch中unsqueeze用法小结

    pytorch中unsqueeze用法小结

    unsqueeze()的作用是用来增加给定tensor的维度的,本文主要介绍了pytorch中unsqueeze用法小结,具有一定的参考价值,感兴趣的可以了解一下
    2024-04-04
  • Python 的counter()函数解析与示例详解

    Python 的counter()函数解析与示例详解

    在 Python 中, collections 模块提供了 Counter 类,用于计算可迭代对象中元素的数量, Counter 是一个字典的子类,它以元素作为键,以元素出现的次数作为值进行计数,本文给大家介绍Python 的counter()函数,感兴趣的朋友一起看看吧
    2023-08-08
  • django.db.utils.ProgrammingError: (1146, u“Table‘’ doesn’t exist”)问题的解决

    django.db.utils.ProgrammingError: (1146, u“Table‘’ doesn’t e

    这篇文章主要给大家介绍了关于执行python manage.py migrate时报错:django.db.utils.ProgrammingError: (1146, "Table 'test.model_student' doesn't exist" )问题的解决方法,文中将解决的方法介绍的非常详细,需要的朋友可以参考下
    2018-07-07

最新评论