如何用Django处理gzip数据流

 更新时间:2021年01月29日 16:30:40   作者:ysj  
这篇文章主要介绍了如何用Django处理gzip数据流,帮助大家更好的理解和使用django框架,感兴趣的朋友可以了解下

最近在工作中遇到一个需求,就是要开一个接口来接收供应商推送的数据。项目采用的python的django框架,我是想也没想,就直接一梭哈,写出了如下代码:

class XXDataPushView(APIView):
  """
  接收xx数据推送
  """
		# ...
  @white_list_required
  def post(self, request, **kwargs):
    req_data = request.data or {}
				# ...

但随后,发现每日数据并没有任何变化,质问供应商是否没有做推送,在忽悠我们。然后对方给的答复是,他们推送的是gzip压缩的数据流,接收端需要主动进行解压。此前从没有处理过这种压缩的数据,对方具体如何做的推送对我来说也是一个黑盒。

因此,我要求对方给一个推送的简单示例,没想到对方不讲武德,仍过来一段没法单独运行的java代码:

private byte[] compress(JSONObject body) {
  try {
    ByteArrayOutputStream out = new ByteArrayOutputStream();
    GZIPOutputStream gzip = new GZIPOutputStream(out);
    gzip.write(body.toString().getBytes());
    gzip.close();
    return out.toByteArray();
  } catch (Exception e) {
    logger.error("Compress data failed with error: " + e.getMessage()).commit();
  }
  return JSON.toJSONString(body).getBytes();
}

public void post(JSONObject body, String url, FutureCallback<HttpResponse> callback) {
  RequestBuilder requestBuilder = RequestBuilder.post(url);
  requestBuilder.addHeader("Content-Type", "application/json; charset=UTF-8");
  requestBuilder.addHeader("Content-Encoding", "gzip");

  byte[] compressData = compress(body);

  int timeout = (int) Math.max(((float)compressData.length) / 5000000, 5000);

  RequestConfig.Builder requestConfigBuilder = RequestConfig.custom();
  requestConfigBuilder.setSocketTimeout(timeout).setConnectTimeout(timeout);

  requestBuilder.setEntity(new ByteArrayEntity(compressData));

  requestBuilder.setConfig(requestConfigBuilder.build());

  excuteRequest(requestBuilder, callback);
}

private void excuteRequest(RequestBuilder requestBuilder, FutureCallback<HttpResponse> callback) {
  HttpUriRequest request = requestBuilder.build();
  httpClient.execute(request, new FutureCallback<HttpResponse>() {
    @Override
    public void completed(HttpResponse httpResponse) {
      try {
        int responseCode = httpResponse.getStatusLine().getStatusCode();
        if (callback != null) {
          if (responseCode == 200) {
            callback.completed(httpResponse);
          } else {
            callback.failed(new Exception("Status code is not 200"));
          }
        }
      } catch (Exception e) {
        logger.error("Get error on " + requestBuilder.getMethod() + " " + requestBuilder.getUri() + ": " + e.getMessage()).commit();
        if (callback != null) {
          callback.failed(e);
        }
      }

      EntityUtils.consumeQuietly(httpResponse.getEntity());
    }

    @Override
    public void failed(Exception e) {
      logger.error("Get error on " + requestBuilder.getMethod() + " " + requestBuilder.getUri() + ": " + e.getMessage()).commit();
      if (callback != null) {
        callback.failed(e);
      }
    }

    @Override
    public void cancelled() {
      logger.error("Request cancelled on " + requestBuilder.getMethod() + " " + requestBuilder.getUri()).commit();
      if (callback != null) {
        callback.cancelled();
      }
    }
  });
}

从上述代码可以看出,对方将json数据压缩为了gzip数据流stream。于是搜索django的文档,只有这段关于gzip处理的装饰器描述:

django.views.decorators.gzip 里的装饰器控制基于每个视图的内容压缩。

  • gzip_page()

如果浏览器允许 gzip 压缩,那么这个装饰器将压缩内容。它相应的设置了 Vary 头部,这样缓存将基于 Accept-Encoding 头进行存储。

但是,这个装饰器只是压缩请求响应至浏览器的内容,我们目前的需求是解压缩接收的数据。这不是我们想要的。

幸运的是,在flask中有一个扩展叫flask-inflate,安装了此扩展会自动对请求来的数据做解压操作。查看该扩展的具体代码处理:

# flask_inflate.py
import gzip
from flask import request

GZIP_CONTENT_ENCODING = 'gzip'


class Inflate(object):
  def __init__(self, app=None):
    if app is not None:
      self.init_app(app)

  @staticmethod
  def init_app(app):
    app.before_request(_inflate_gzipped_content)


def inflate(func):
  """
  A decorator to inflate content of a single view function
  """
  def wrapper(*args, **kwargs):
    _inflate_gzipped_content()
    return func(*args, **kwargs)

  return wrapper


def _inflate_gzipped_content():
  content_encoding = getattr(request, 'content_encoding', None)

  if content_encoding != GZIP_CONTENT_ENCODING:
    return

  # We don't want to read the whole stream at this point.
  # Setting request.environ['wsgi.input'] to the gzipped stream is also not an option because
  # when the request is not chunked, flask's get_data will return a limited stream containing the gzip stream
  # and will limit the gzip stream to the compressed length. This is not good, as we want to read the
  # uncompressed stream, which is obviously longer.
  request.stream = gzip.GzipFile(fileobj=request.stream)

上述代码的核心是:

 request.stream = gzip.GzipFile(fileobj=request.stream)

于是,在django中可以如下处理:

class XXDataPushView(APIView):
  """
  接收xx数据推送
  """
		# ...
  @white_list_required
  def post(self, request, **kwargs):
    content_encoding = request.META.get("HTTP_CONTENT_ENCODING", "")
    if content_encoding != "gzip":
      req_data = request.data or {}
    else:
      gzip_f = gzip.GzipFile(fileobj=request.stream)
      data = gzip_f.read().decode(encoding="utf-8")
      req_data = json.loads(data)
    # ... handle req_data

ok, 问题完美解决。还可以用如下方式测试请求:

import gzip
import requests
import json

data = {}

data = json.dumps(data).encode("utf-8")
data = gzip.compress(data)

resp = requests.post("http://localhost:8760/push_data/",data=data,headers={"Content-Encoding": "gzip", "Content-Type":"application/json;charset=utf-8"})

print(resp.json())

以上就是如何用Django处理gzip数据流的详细内容,更多关于Django处理gzip数据流的资料请关注脚本之家其它相关文章!

相关文章

  • python使用matplotlib库生成随机漫步图

    python使用matplotlib库生成随机漫步图

    这篇文章主要为大家详细介绍了使用Python的matplotlib库生成随机漫步图,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2018-08-08
  • flask中主动抛出异常及统一异常处理代码示例

    flask中主动抛出异常及统一异常处理代码示例

    这篇文章主要介绍了flask中主动抛出异常及统一异常处理代码示例,具有一定借鉴价值,需要的朋友可以参考下
    2018-01-01
  • 利用Python实现简单的相似图片搜索的教程

    利用Python实现简单的相似图片搜索的教程

    这篇文章主要介绍了利用Python实现简单的相似图片搜索的教程,文中的示例主要在一个图片指纹数据库中实现,需要的朋友可以参考下
    2015-04-04
  • pandas如何计算移动平均值

    pandas如何计算移动平均值

    在处理金融数据分析时,常需计算移动平均值。遇到数据不足导致结果为NAN问题,可使用pandas中rolling函数的min_periods参数。设置min_periods=1即可解决,它允许窗口中的非空观测值少于窗口大小时也能计算均值,确保数据不足时也能得出结果
    2024-09-09
  • python Django模板的使用方法(图文)

    python Django模板的使用方法(图文)

    模板通常用于产生HTML,但是Django的模板也能产生任何基于文本格式的文档。
    2013-11-11
  • Python中一个for循环循环多个变量的示例

    Python中一个for循环循环多个变量的示例

    今天小编就为大家分享一篇Python中一个for循环循环多个变量的示例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python Flask框架使用介绍

    Python Flask框架使用介绍

    今天来给大家说一个Python的轻量级web开发框架——Flask,为什么要推荐它呢?当然是因为它够轻量级了,开发迅速是它的特点,当然它也有缺点,不过这里不说,因为既用它又说它差感觉不好
    2022-08-08
  • Python assert关键字原理及实例解析

    Python assert关键字原理及实例解析

    这篇文章主要介绍了Python assert关键字原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-12-12
  • python有序查找算法 二分法实例解析

    python有序查找算法 二分法实例解析

    这篇文章主要介绍了python有序查找算法 二分法实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-02-02
  • Python 线程池模块之多线程操作代码

    Python 线程池模块之多线程操作代码

    最近在做一个爬虫相关的项目,单线程的整站爬虫,耗时真的不是一般的巨大,运行一次也是心累,所以,要想实现整站爬虫,多线程是不可避免的,那么python多线程又应该怎样实现呢?今天小编给大家分享下实现代码,感兴趣的朋友一起看看吧
    2021-05-05

最新评论