20行代码教你用python给证件照换底色的方法示例

 更新时间:2021年02月05日 10:02:32   作者:Huang supreme  
这篇文章主要介绍了20行代码教你用python给证件照换底色的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

1.图片来源

该图片来源于百度图片,如果侵权,请联系我删除!图片仅用于知识交流。

在这里插入图片描述

2.读取图片并显示

  • imread():读取图片;
  • imshow():展示图片;
  • waitkey():设置窗口等待,如果不设置,窗口会一闪而过;
import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 显示图像
cv2.imshow('img',img)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

效果如下:

在这里插入图片描述

3.图片缩放

resize():图片缩放,其中fx和fy表示缩放比例,0.5表示缩放为以前的 一半。

import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)

# 显示图像
cv2.imshow('img',img)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

在这里插入图片描述

4.将图片转换为灰度图像

三色图片有RGB三个颜色通道,无法进行腐蚀和膨胀的操作。这个就需要我们将彩色图片转换为hsv灰度图像后,再完成腐蚀和膨胀的操作。

cv2.cvtColor(img,cv2.COLOR_BGR2HSV)可以将彩色图片转化为hsv灰度图片。

import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为二值化图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)

# 显示图像
cv2.imshow('hsv',hsv)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

在这里插入图片描述

5.将图片进行二值化处理

二值化处理是为了将图片转换为黑白图片。二值化类似于1表示男、2表示女,对于图像的处理我们也需要自定义一个最小值和最大值,这里分别用lower_blue和upper_blue表示

  • lower_blue = np.array([90,70,70])
  • upper_blue = np.array([110,255,255])
  • inRange(hsv, lower_blue, upper_blue)将图片进行二值化操作。
import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为灰度图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
cv2.imshow('hsv',hsv)

# 图片的二值化处理
lower_blue = np.array([90,70,70])
upper_blue = np.array([110,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)


# 显示图像
cv2.imshow('mask',mask)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

在这里插入图片描述

缺点:我们观察第三章图片,发现黑色区域有时候会出现一些噪声(白点),这里可能显示的不是很明显,有的图片显示的很明显,这就需要我们进行腐蚀或膨胀。

6.图象的腐蚀和膨胀

上面的图象进行二值化后,出现了一些噪声,我们可以采用腐蚀或膨胀进行图片的处理,观察哪种的处理效果好一些。

  • erode(mask,None,iterations=1)进行腐蚀操作。
  • dilate(erode,None,iterations=1)进行膨胀操作。
import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为灰度图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
cv2.imshow('hsv',hsv)

# 图片的二值化处理
lower_blue=np.array([90,70,70])
upper_blue=np.array([110,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)


#腐蚀膨胀
erode=cv2.erode(mask,None,iterations=1)
cv2.imshow('erode',erode)

dilate=cv2.dilate(erode,None,iterations=1)
cv2.imshow('dilate',dilate)


# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

结果如下:

在这里插入图片描述

观察上图:对于这个图片,无论是腐蚀或膨胀,都起到了很好的去图片噪声的操作,我们使用腐蚀后的图片也可以,我们使用膨胀后的图片也可以。

7.遍历每个像素点进行颜色替换

图片是由每一个像素点组成的,我们就是要找到腐蚀后得到图片的,白色底色处的像素点,然后将原图中对应位置处的像素点,替换为红色。

import cv2
import numpy as np
# 读取照片
img=cv2.imread('girl.jpg')

# 图像缩放
img = cv2.resize(img,None,fx=0.5,fy=0.5)
rows,cols,channels = img.shape
print(rows,cols,channels)
cv2.imshow('img',img)

# 图片转换为灰度图
hsv = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
cv2.imshow('hsv',hsv)

# 图片的二值化处理
lower_blue=np.array([90,70,70])
upper_blue=np.array([110,255,255])
mask = cv2.inRange(hsv, lower_blue, upper_blue)


#腐蚀膨胀
erode=cv2.erode(mask,None,iterations=1)
cv2.imshow('erode',erode)

dilate=cv2.dilate(erode,None,iterations=1)
cv2.imshow('dilate',dilate)

#遍历替换
for i in range(rows):
 for j in range(cols):
  if erode[i,j]==255: # 像素点为255表示的是白色,我们就是要将白色处的像素点,替换为红色
   img[i,j]=(0,0,255) # 此处替换颜色,为BGR通道,不是RGB通道
cv2.imshow('res',img)

# 窗口等待的命令,0表示无限等待
cv2.waitKey(0)

效果如下:

在这里插入图片描述

到此这篇关于20行代码教你用python给证件照换底色的方法示例的文章就介绍到这了,更多相关python 证件照换底色内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Pandas中时间序列的处理大全

    Pandas中时间序列的处理大全

    这篇文章主要给大家介绍了关于Pandas中时间序列处理的相关资料,pandas 是基于NumPy 的一种工具,该工具是为解决数据分析任务而创建的,需要的朋友可以参考下
    2021-06-06
  • 基于python编写的shell脚本详细讲解

    基于python编写的shell脚本详细讲解

    python相对于linux的shell脚本来说更简单,功能更强大,代码量也少很多,这里就为大家分享一下
    2021-09-09
  • python入门基础之用户输入与模块初认识

    python入门基础之用户输入与模块初认识

    Python的强大之处在于他有非常丰富和强大的标准库和第三方库,几乎你想实现的任何功能都有相应的Python库支持。下面通过本文给大家介绍python入门基础之用户输入与模块初认识,一起看看吧
    2016-11-11
  • 10个Python自动化办公的脚本分享

    10个Python自动化办公的脚本分享

    在日常办公中,我们常常会被繁琐、重复的任务占据大量时间,本文为大家分享了10个实用的 Python 自动化办公案例及源码,希望对大家有所帮助
    2025-02-02
  • matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)

    matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异)

    这篇文章主要介绍了matplotlib源码解析标题实现(窗口标题,标题,子图标题不同之间的差异),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-02-02
  • matplotlib实现显示伪彩色图像及色度条

    matplotlib实现显示伪彩色图像及色度条

    今天小编就为大家分享一篇matplotlib实现显示伪彩色图像及色度条,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • python代码实现逻辑回归logistic原理

    python代码实现逻辑回归logistic原理

    这篇文章主要介绍了python代码实现逻辑回归logistic原理,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • python使用SimpleXMLRPCServer实现简单的rpc过程

    python使用SimpleXMLRPCServer实现简单的rpc过程

    这篇文章主要介绍了python使用SimpleXMLRPCServer实现简单的rpc过程,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-06-06
  • Python重复文件批量整理工具的设计与实现

    Python重复文件批量整理工具的设计与实现

    这篇文章主要为大家详细介绍了如何通关Python编写一个重复文件批量整理工具,可以在文件夹内对文件进行去重和分类存储,有需要的可以了解下
    2025-02-02
  • python中使用 xlwt 操作excel的常见方法与问题

    python中使用 xlwt 操作excel的常见方法与问题

    这篇文章主要给大家介绍了关于python中使用 xlwt 操作excel的常见方法与问题的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-01-01

最新评论