pandas按条件筛选数据的实现

 更新时间:2021年02月20日 11:35:16   作者:Sun_Sherry  
这篇文章主要介绍了pandas按条件筛选数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

pandas中对DataFrame筛选数据的方法有很多的,以后会后续进行补充,这里只整理遇到错误的情况。

1.使用布尔型DataFrame对数据进行筛选

使用一个条件对数据进行筛选,代码类似如下:

num_red=flags[flags['red']==1]

使用多个条件对数据进行筛选,代码类似如下:

stripes_or_bars=flags[(flags['stripes']>=1) | (flags['bars']>=1)]

常见的错误代码如下:

代码一:

stripes_or_bars=flags[flags['stripes']>=1 or flags['bars']>=1]

代码二:

stripes_or_bars=flags[flags['stripes']>=1 | flags['bars']>=1].

代码三:

stripes_or_bars=flags[(flags['stripes']>=1) or (flags['bars']>=1)]

以上这三种代码的错误提示都是:ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all(). 中括号里面的逻辑式如何解析的暂时不清楚。貌似不能使用and、or及not。

除了使用组合的逻辑表达式之外,使用返回类型为布尔型值的函数也可以达到筛选数据的效果。示例如下:

import pandas as pd
import numpy as np
df=pd.DataFrame(np.array(range(10)).reshape((5,-1)))
df.columns=['0','1']
df=df[df['1'].isin([3,5,9])]

 其df的结果如下:

2.iloc()方法、ix()方法和iloc()方法的区别

首先dataframe一般有两种类型的索引:第一种是位置索引,即dataframe自带的从0开始的索引,这种索引叫位置索引。另一种即标签索引,这种索引是你在创建datafram时通过index关键字,或者通过其他index相关方法重新给dataframe设置的索引。这两种索引是同时存在的。一般设置了标签索引之后,就不在显示位置索引,但不意味着位置索引就不存在了。

假设有如下几行数据(截图部分只是数据的一部分),很明显,以下显示的索引为标签索引。同时574(标签索引)行对应的位置索引则为0,1593行对应的位置索引为2, 以此类推。

先来看loc(),其API网址http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.htm,函数名下方有一行解释,Access a group of rows and columns by label(s) or a boolean array.. loc[] is primarily label based, but may also be used with a boolean array. 

代码一:

first_listing = normalized_listings.loc[[0,4]]

结果如下,可以看出其输出的是dataframe中标签索引为0和4的两行数据。注意,如果标签索引的类型为字符串,则在loc中也要用字符串的形式。

再来看iloc(),其API网址http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html,函数名下方的解释为 Purely integer-location based indexing for selection by position. .iloc[] is primarily integer position based ( from 0 to length-1 of the axis), but may also be used with a boolean array.

代码二:

first_listing = normalized_listings.iloc[[0,4]]

结果如下,可以看出其输出的dataframe中第0行和第4行的数据,即按方法是按照位置索引取得数。注意使用位置索引的时候只能用整数(integer position,bool类型除外)

另外,还可以向loc和iloc中传入bool序列,这样就可以将前面介绍的boo表达式用到loc和iloc中。下面来看看怎么使用bool序列?

import pandas as pd
data=pd.DataFrame(data={'col1':[1,2,3,5,10],'col2':[50,90,67,75,100]},\
         index=['a','b','c','d','e'])
print(data)
#iloc[]示例,iloc似乎不能直接使用逻辑表达式的结果,我这里将其转置成list之后就可以用了,原因暂且不明
data_1=data.iloc[list(data['col1']>5)]
print(data_1)
#loc[]示例,loc中可以直接使用逻辑表达式
data_2=data.loc[data['col1']>5]
print(data_2)

在iloc[]中,如果直接使用loc中的逻辑表达式而不进行list()转化的话,会提示ValueError: iLocation based boolean indexing cannot use an indexable as a mask错误。

如果查看上述两段代码中得到的first_listing。我们会发现两处first_listing的类型均为datafrarm。loc和iloc除了能对行进行筛选,还可以筛选列。如果在loc和iloc中设定了对列的筛选,则筛选之后得到的数据可能是datafrme类型,也有可能是Series类型。下面直接以代码运行结果进行说明。

import pandas as pd
data=pd.DataFrame(data={'col1':[1,2,3,5,10],'col2':[50,90,67,75,100]},\
         index=['a','b','c','d','e'])
print(data)
#iloc[]示例 ,在使用iloc的时候,[]里面无论是筛选行还是筛选列,都只能使用数字形式的行号或列号。
#这里如果使用‘col2',这里会报错
data_1=data.iloc[[0,4],[1]]#当需要筛选出多列或者希望返回的结果为DataFrame时,可以将列号用[]括起来。
print(data_1)
print(type(data_1))
data_2=data.iloc[[0,4],1]#当只需要筛选出其中的一列时可以只写一个列号,不加中括号,这种方法得到的是一个Series
print(data_2)
print(type(data_2))
#loc[]示例
data_3=data.loc[['a','e'],['col2']]
print(data_3)
print(type(data_3))
data_4=data.loc[['a','e'],'col2']
print(data_4)
print(type(data_4))

具体的代码执行结果如下:

最后看ix()方法,其API网址http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.ix.html,其解释为 A primarily label-location based indexer, with integer position fallback.

代码三:

first_listing = normalized_listings.ix[[0,4]]

结果如下似乎与loc()方法的结果是相同的,但是从其给出的解释来看,其好像是前两个方法的集合。

到此这篇关于pandas按条件筛选数据的实现的文章就介绍到这了,更多相关pandas 条件筛选 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python通过PIL获取图片主要颜色并和颜色库进行对比的方法

    Python通过PIL获取图片主要颜色并和颜色库进行对比的方法

    这篇文章主要介绍了Python通过PIL获取图片主要颜色并和颜色库进行对比的方法,实例分析了Python通过PIL模块操作图片的技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-03-03
  • Python标准库os库的常用功能解析

    Python标准库os库的常用功能解析

    这篇文章主要介绍了Python标准库os库的常用功能解析,os库是Python标准库之一,它提供了非常丰富的文件及目录读写的方法
    2022-07-07
  • python 爬取免费简历模板网站的示例

    python 爬取免费简历模板网站的示例

    这篇文章主要介绍了python 爬取免费简历模板网站的示例,帮助大家更好的理解和使用python 爬虫,感兴趣的朋友可以了解下
    2020-09-09
  • python 利用 PIL 将数组值转成图片的实现

    python 利用 PIL 将数组值转成图片的实现

    这篇文章主要介绍了python 利用 PIL 将数组值转成图片的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • numpy数组的维度、轴及运用详解

    numpy数组的维度、轴及运用详解

    这篇文章主要介绍了numpy数组的维度、轴详解,numpy数组的某个轴,指的是:该数组的某个维度的方向,其方向从索引号由底到高,许多numpy方法或函数在调用时,常常需要指定一个关键参数“axis=X”,它表示的是沿哪个轴的方向进行运算,需要的朋友可以参考下
    2023-09-09
  • 详解使用python爬取抖音app视频(appium可以操控手机)

    详解使用python爬取抖音app视频(appium可以操控手机)

    这篇文章主要介绍了详解使用python爬取抖音app视频(appium可以操控手机),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-01-01
  • MacBook m1芯片采用miniforge安装python3.9的方法示例

    MacBook m1芯片采用miniforge安装python3.9的方法示例

    这篇文章主要介绍了MacBook m1芯片采用miniforge安装python3.9的方法示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2021-04-04
  • 简述python&pytorch 随机种子的实现

    简述python&pytorch 随机种子的实现

    这篇文章主要介绍了简述python&pytorch 随机种子的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • Python 生成器yield原理及用法

    Python 生成器yield原理及用法

    这篇文章主要介绍了Python 生成器yield原理及用法,yield 是实现生成器方法之一,当函数使用yield方法,则该函数就成为了一个生成器,更多相关资料需要的小伙伴可以参考一下下面文章内容
    2022-06-06
  • Python导入不同文件夹中文件的方法详解

    Python导入不同文件夹中文件的方法详解

    在写python程序的时候,经常会用到引入其他文件夹里的py文件,下面这篇文章主要给大家介绍了关于Python导入不同文件夹中文件的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-06-06

最新评论