Python爬取你好李焕英豆瓣短评生成词云的示例代码

 更新时间:2021年02月24日 15:51:31   作者:一个超会写Bug的安太狼  
这篇文章主要介绍了Python爬取你好李焕英豆瓣短评生成词云,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下

爬取过程:

你好,李焕英 短评的URL:

https://movie.douban.com/subject/34841067/comments?start=20&limit=20&status=P&sort=new_score

在这里插入图片描述

分析要爬取的URL;
34841067:电影ID
start=20:开始页面
limit=20:每页评论条数

代码:

url = 'https://movie.douban.com/subject/%s/comments?start=%s&limit=20&sort=new_score&status=P % (movie_id, (i - 1) * 20)

在谷歌浏览器中按F12进入开发者调试模式,查看源代码,找到短评的代码位置,查看位于哪个div,哪个标签下:

在这里插入图片描述

可以看到评论在div[id=‘comments']下的div[class=‘comment-item']中的第一个span[class=‘short']中,使用正则表达式提取短评内容,即代码为:

url = 'https://movie.douban.com/subject/%s/comments?start=%s&limit=20&sort=new_score&status=P' \
     % (movie_id, (i - 1) * 20)

   req = requests.get(url, headers=headers)
   req.encoding = 'utf-8'
   comments = re.findall('<span class="short">(.*)</span>', req.text)

背景图:

在这里插入图片描述

生成的词云:

在这里插入图片描述

完整代码:

import re
from PIL import Image
import requests
import jieba
import matplotlib.pyplot as plt
import numpy as np

from os import path

from wordcloud import WordCloud, STOPWORDS

headers = {
  'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:64.0) Gecko/20100101 Firefox/64.0'
}

d = path.dirname(__file__)

def spider_comment(movie_id, page):
 """
 爬取评论
 :param movie_id: 电影ID
 :param page: 爬取前N页
 :return: 评论内容
 """
 comment_list = []
 for i in range(page):
  url = 'https://movie.douban.com/subject/%s/comments?start=%s&limit=20&sort=new_score&status=P&percent_type=' \
    % (movie_id, (i - 1) * 20)

  req = requests.get(url, headers=headers)
  req.encoding = 'utf-8'
  comment_list = re.findall('<span class="short">(.*)</span>', req.text)


  print("当前页数:%s,总评论数:%s" % (i, len(comment_list)))

 return comment_list

def wordcloud(comment_list):

 wordlist = jieba.lcut(' '.join(comment_list))
 text = ' '.join(wordlist)

 print(text)

 # 调用包PIL中的open方法,读取图片文件,通过numpy中的array方法生成数组
 backgroud_Image = np.array(Image.open(path.join(d, "wordcloud.png")))

 wordcloud = WordCloud(
  font_path="simsun.ttc",
  background_color="white",

  mask=backgroud_Image, # 设置背景图片
  stopwords=STOPWORDS,
  width=2852,
  height=2031,
  margin=2,
  max_words=6000, # 设置最大显示的字数
  #stopwords={'企业'}, # 设置停用词,停用词则不再词云图中表示
  max_font_size=250, # 设置字体最大值
  random_state=1, # 设置有多少种随机生成状态,即有多少种配色方案
  scale=1) # 设置生成的词云图的大小

 # 传入需画词云图的文本
 wordcloud.generate(text)

 wordcloud.to_image()
 wordcloud.to_file("cloud.png")

 plt.imshow(wordcloud)
 plt.axis("off")
 plt.show()

# 主函数
if __name__ == '__main__':
 movie_id = '34841067'
 page = 11
 comment_list = spider_comment(movie_id, page)
 wordcloud(comment_list)

WordCloud各含义参数如下:

font_path : string #字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = '黑体.ttf'

width : int (default=400) #输出的画布宽度,默认为400像素

height : int (default=200) #输出的画布高度,默认为200像素

prefer_horizontal : float (default=0.90) #词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 )

mask : nd-array or None (default=None) #如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。如:bg_pic = imread('读取一张图片.png'),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。可以用ps工具将自己要显示的形状复制到一个纯白色的画布上再保存,就ok了。

scale : float (default=1) #按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍

min_font_size : int (default=4) #显示的最小的字体大小

font_step : int (default=1) #字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差

max_words : number (default=200) #要显示的词的最大个数

stopwords : set of strings or None #设置需要屏蔽的词,如果为空,则使用内置的STOPWORDS

background_color : color value (default=”black”) #背景颜色,如background_color='white',背景颜色为白色

max_font_size : int or None (default=None) #显示的最大的字体大小

mode : string (default=”RGB”) #当参数为“RGBA”并且background_color不为空时,背景为透明

relative_scaling : float (default=.5) #词频和字体大小的关联性

color_func : callable, default=None #生成新颜色的函数,如果为空,则使用 self.color_func

regexp : string or None (optional) #使用正则表达式分隔输入的文本

collocations : bool, default=True #是否包括两个词的搭配

colormap : string or matplotlib colormap, default=”viridis” #给每个单词随机分配颜色,若指定color_func,则忽略该方法

random_state : int or None #为每个单词返回一个PIL颜色


fit_words(frequencies) #根据词频生成词云
generate(text) #根据文本生成词云
generate_from_frequencies(frequencies[, ...]) #根据词频生成词云
generate_from_text(text) #根据文本生成词云
process_text(text) #将长文本分词并去除屏蔽词(此处指英语,中文分词还是需要自己用别的库先行实现,使用上面的 fit_words(frequencies) )
recolor([random_state, color_func, colormap]) #对现有输出重新着色。重新上色会比重新生成整个词云快很多
to_array() #转化为 numpy array
to_file(filename) #输出到文件

到此这篇关于Python爬取你好李焕英豆瓣短评生成词云的文章就介绍到这了,更多相关Python爬取豆瓣短评内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Python3.6实现连接mysql或mariadb的方法分析

    Python3.6实现连接mysql或mariadb的方法分析

    这篇文章主要介绍了Python3.6实现连接mysql或mariadb的方法,结合实例形式分析了Python3.6针对mysql或mariadb数据库操作的相关模块安装、数据库与表的创建、数据库连接等操作技巧与注意事项,需要的朋友可以参考下
    2018-05-05
  • Python 轻松实现可视化大屏

    Python 轻松实现可视化大屏

    对于从事数据领域的小伙伴来说,当需要阐述自己观点、展示项目成果时,我们需要在最短时间内让别人知道你的想法。我相信单调乏味的语言很难让别人快速理解。最直接有效的方式就是将数据进行可视化展现
    2022-01-01
  • Python pandas如何根据指定条件筛选数据

    Python pandas如何根据指定条件筛选数据

    这篇文章主要介绍了Python pandas如何根据指定条件筛选数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-02-02
  • python Tkinter模块使用方法详解

    python Tkinter模块使用方法详解

    Python的GUI库非常多,之所以选择 Tkinter,一是最为简单,二是自带库,不需下载安装,随时使用,跨平台兼容性非常好,下面这篇文章主要给大家介绍了关于python Tkinter模块使用方法的相关资料,需要的朋友可以参考下
    2022-04-04
  • Python count()函数实例详解

    Python count()函数实例详解

    count() 是Python的内置函数,可以「统计」字符串里指定「字符」或指定字符串出现的「次数」,这篇文章主要介绍了Python count()函数详解,需要的朋友可以参考下
    2023-07-07
  • Python爬取数据并实现可视化代码解析

    Python爬取数据并实现可视化代码解析

    这篇文章主要介绍了Python爬取数据并实现可视化代码解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-08-08
  • 浅谈Python脚本开头及导包注释自动添加方法

    浅谈Python脚本开头及导包注释自动添加方法

    今天小编就为大家分享一篇浅谈Python脚本开头及导包注释自动添加方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-10-10
  • DeepSeek安装部署完整步骤记录

    DeepSeek安装部署完整步骤记录

    DeepSeek是一个用于高效文档检索的工具包,这篇文章详细介绍了从环境准备到部署和测试的整个过程,需要的朋友可以参考下
    2025-02-02
  • pytorch中的numel函数用法说明

    pytorch中的numel函数用法说明

    这篇文章主要介绍了pytorch中的numel函数用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-05-05
  • pytest配置项目不同环境URL的实现

    pytest配置项目不同环境URL的实现

    pytest-base-url是pytest的第三方插件,主要用来帮助我们进行切换测试环境地址,下面就来介绍一下配置不同环境URL的实现,感兴趣的可以了解一下
    2024-02-02

最新评论