删除pandas中产生Unnamed:0列的操作

 更新时间:2021年03月27日 09:05:00   作者:敲代码的乔帮主  
这篇文章主要介绍了删除pandas中产生Unnamed:0列的操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我们在数据处理,往往不小心,pandas会“主动”加上行和列的名称,我现在就遇到了这个问题。

这个是pandas中to_csv生成的数据各种拼接之后的最终数据(默认参数,index=True,column=True)

Unnamed: 0   ip Unnamed: 0.1 ...  766  767 class
0   0 google.com    0 ... 0.376452 0.148091  0
1   1 facebook.com    1 ... -0.044634 -0.180167  0
2   2 youtube.com    2 ... 0.172028 0.002102  0
3   3  yahoo.com    3 ... 0.286067 -0.269647  0
4   4  baidu.com    4 ... 0.034892 0.445554  0

我们可以看到,第一列 Unnamed:0 ,第三列Unnamed:0,这两列是我们不想需要的数据,产生原因是我们在生成csv文件的时候,采用的是默认参数,我们可以在生成csv时候,可以使用下面参数解决这一个问题。

to_csv()时候,设置index=False。或者加上index=True, index_label="id"

另外有其他同学会说了,我不想重复的再进行一遍数据处理工作,我就想在我们生成这个CSV中处理,一样是可以的,事实是我也是这么做的。

import pandas as pd 
data = pd.read_csv('finalData.csv')
print('一共有多少个样本呢?', len(data))
print('展示样本前4个数据')
print(data.head())
print('打印样本集的其他详细信息:')
print(data.info())
print('=============================开始处理:==============================')
newData = data.loc[:, ~data.columns.str.contains('^Unnamed')]
print(newData.head())
newData.to_csv('myVecData.csv', index=False)

别忘了index=False,不然又生成一列新的这个不讨人喜欢的东西了。列处理也是一样,有参数column=False,不再赘述。

最后效果:

=============================开始处理:==============================
    ip   0   1 ...  766  767 class
0 google.com 0.282674 -0.359200 ... 0.376452 0.148091  0
1 facebook.com 0.542586 -0.390693 ... -0.044634 -0.180167  0
2 youtube.com 0.598675 -0.679748 ... 0.172028 0.002102  0
3  yahoo.com 0.212740 -0.823602 ... 0.286067 -0.269647  0
4  baidu.com 0.017386 -0.355357 ... 0.034892 0.445554  0
 

补充:【pandas】pandas每次使用append追加行时都生成一个Unnamed列

pandas每次使用append追加行时多出一个Unnamed列!

解决办法:

追加行数据前,read_csv函数读取数据时, 增加 index_col 参数,指定哪一行为索引行。

如:

test = pd.read_csv(filename,index_col=0)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

  • python语音识别的转换方法

    python语音识别的转换方法

    语音识别技术,也被称为自动语音识别,目标是以电脑自动将人类的语音内容转换为相应的文字。应用包括语音拨号、语音导航、室内设备控制、语音文档检索、简单的听写数据录入等。本文给大家介绍python语音识别的方法,感兴趣的朋友一起看看吧
    2021-10-10
  • Python实现画箱线图展示数据分布情况

    Python实现画箱线图展示数据分布情况

    这篇文章主要介绍了Python实现画箱线图展示数据分布情况,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2024-07-07
  • pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换

    pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换

    今天小编就为大家分享一篇pytorch 实现张量tensor,图片,CPU,GPU,数组等的转换,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01
  • Python实现线程状态监测简单示例

    Python实现线程状态监测简单示例

    这篇文章主要介绍了Python实现线程状态监测,结合简单实例形式分析了Python线程start启动、sleep推迟运行、isAlive判断等方法使用技巧,需要的朋友可以参考下
    2018-03-03
  • Python中Selenium模块的使用详解

    Python中Selenium模块的使用详解

    这篇文章主要介绍了Python中Selenium模块的使用详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-10-10
  • Django中ORM找出内容不为空的数据实例

    Django中ORM找出内容不为空的数据实例

    这篇文章主要介绍了Django中ORM找出内容不为空的数据实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-05-05
  • python 寻找离散序列极值点的方法

    python 寻找离散序列极值点的方法

    今天小编就为大家分享一篇python 寻找离散序列极值点的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-07-07
  • Python Django安装配置模板系统及使用实战全面详解

    Python Django安装配置模板系统及使用实战全面详解

    本文首先介绍了Django模板系统的基础知识,接着探讨了如何安装和配置Django模板系统,然后深入解析了Django模板的基本结构、标签和过滤器的用法,阐述了如何在模板中展示模型数据,最后使用一个实际项目的例子来演示如何在实际开发中使用Django模板系统
    2023-09-09
  • Python3 读取Word文件方式

    Python3 读取Word文件方式

    今天小编就为大家分享一篇Python3 读取Word文件方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-02-02
  • 编写python代码实现简单抽奖器

    编写python代码实现简单抽奖器

    这篇文章主要介绍了编写python代码实现简单抽奖器,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-10-10

最新评论