pytorch单维筛选 相乘的案例

 更新时间:2021年04月08日 12:29:06   作者:ShellCollector  
这篇文章主要介绍了pytorch单维筛选 相乘的案例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

m需要和筛选的结果维度相同

>0.5运行的结果与原来维度相同,结果是 0 1,0代不符合,1代表符合。

import torch
m=torch.Tensor([0.1,0.2,0.3]).cuda()
iou=torch.Tensor([0.5,0.6,0.7])
x= m * ((iou > 0.5).type(torch.cuda.FloatTensor))
print(x)

下面是把第一条与第二条变成了2:

import torch
m=torch.Tensor([0.1,0.2,0.3]).cuda()
iou=torch.Tensor([0.5,0.6,0.7])
a=iou > 0.5
m[[0,1,1]]=2
print(m)

下面的结果:0.2与0.3改为了2

import torch
m=torch.Tensor([0.1,0.2,0.3]).cuda()
iou=torch.Tensor([0.5,0.6,0.7])
a=iou > 0.5
m[a]=2
print(m)

补充:torch.Tensor的4种乘法

torch.Tensor有4种常见的乘法:*, torch.mul, torch.mm, torch.matmul. 本文抛砖引玉,简单叙述一下这4种乘法的区别,具体使用还是要参照官方文档

点乘

a与b做*乘法,原则是如果a与b的size不同,则以某种方式将a或b进行复制,使得复制后的a和b的size相同,然后再将a和b做element-wise的乘法。

下面以*标量和*一维向量为例展示上述过程。

* 标量

Tensor与标量k做*乘法的结果是Tensor的每个元素乘以k(相当于把k复制成与lhs大小相同,元素全为k的Tensor).

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> a * 2
tensor([[2., 2., 2., 2.],
        [2., 2., 2., 2.],
        [2., 2., 2., 2.]])

* 一维向量

Tensor与行向量做*乘法的结果是每列乘以行向量对应列的值(相当于把行向量的行复制,成为与lhs维度相同的Tensor). 注意此时要求Tensor的列数与行向量的列数相等。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3,4])
>>> b
tensor([1., 2., 3., 4.])
>>> a * b
tensor([[1., 2., 3., 4.],
        [1., 2., 3., 4.],
        [1., 2., 3., 4.]])

Tensor与列向量做*乘法的结果是每行乘以列向量对应行的值(相当于把列向量的列复制,成为与lhs维度相同的Tensor). 注意此时要求Tensor的行数与列向量的行数相等。

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
        [2.],
        [3.]])
>>> a * b
tensor([[1., 1., 1., 1.],
        [2., 2., 2., 2.],
        [3., 3., 3., 3.]])

* 矩阵

经Arsmart在评论区提醒,增补一个矩阵 * 矩阵的例子,感谢Arsmart的热心评论!

如果两个二维矩阵A与B做点积A * B,则要求A与B的维度完全相同,即A的行数=B的行数,A的列数=B的列数

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> a * a
tensor([[1, 4],
        [4, 9]])

broadcast

点积是broadcast的。broadcast是torch的一个概念,简单理解就是在一定的规则下允许高维Tensor和低维Tensor之间的运算。broadcast的概念稍显复杂,在此不做展开,可以参考官方文档关于broadcast的介绍. 在torch.matmul里会有关于broadcast的应用的一个简单的例子。

这里举一个点积broadcast的例子。在例子中,a是二维Tensor,b是三维Tensor,但是a的维度与b的后两位相同,那么a和b仍然可以做点积,点积结果是一个和b维度一样的三维Tensor,运算规则是:若c = a * b, 则c[i,*,*] = a * b[i, *, *],即沿着b的第0维做二维Tensor点积,或者可以理解为运算前将a沿着b的第0维也进行了expand操作,即a = a.expand(b.size()); a * b。

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> b = torch.tensor([[[1,2],[2,3]],[[-1,-2],[-2,-3]]])
>>> a * b
tensor([[[ 1,  4],
         [ 4,  9]],
        [[-1, -4],
         [-4, -9]]])
>>> b * a
tensor([[[ 1,  4],
         [ 4,  9]],
        [[-1, -4],
         [-4, -9]]])

其实,上面提到的二维Tensor点积标量、二维Tensor点积行向量,都是发生在高维向量和低维向量之间的,也可以看作是broadcast.

torch.mul

官方文档关于torch.mul的介绍. 用法与*乘法相同,也是element-wise的乘法,也是支持broadcast的。

下面是几个torch.mul的例子.

乘标量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> a * 2
tensor([[2., 2., 2., 2.],
        [2., 2., 2., 2.],
        [2., 2., 2., 2.]])

乘行向量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3,4])
>>> b
tensor([1., 2., 3., 4.])
>>> torch.mul(a, b)
tensor([[1., 2., 3., 4.],
        [1., 2., 3., 4.],
        [1., 2., 3., 4.]])

乘列向量

>>> a = torch.ones(3,4)
>>> a
tensor([[1., 1., 1., 1.],
        [1., 1., 1., 1.],
        [1., 1., 1., 1.]])
>>> b = torch.Tensor([1,2,3]).reshape((3,1))
>>> b
tensor([[1.],
        [2.],
        [3.]])
>>> torch.mul(a, b)
tensor([[1., 1., 1., 1.],
        [2., 2., 2., 2.],
        [3., 3., 3., 3.]])

乘矩阵

例1:二维矩阵 mul 二维矩阵

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> torch.mul(a,a)
tensor([[1, 4],
        [4, 9]])

例2:二维矩阵 mul 三维矩阵(broadcast)

>>> a = torch.tensor([[1, 2], [2, 3]])
>>> b = torch.tensor([[[1,2],[2,3]],[[-1,-2],[-2,-3]]])
>>> torch.mul(a,b)
tensor([[[ 1,  4],
         [ 4,  9]],
        [[-1, -4],
         [-4, -9]]])

torch.mm

官方文档关于torch.mm的介绍. 数学里的矩阵乘法,要求两个Tensor的维度满足矩阵乘法的要求.

例子:

>>> a = torch.ones(3,4)
>>> b = torch.ones(4,2)
>>> torch.mm(a, b)
tensor([[4., 4.],
        [4., 4.],
        [4., 4.]])

torch.matmul

官方文档关于torch.matmul的介绍. torch.mm的broadcast版本.

例子:

>>> a = torch.ones(3,4)
>>> b = torch.ones(5,4,2)
>>> torch.matmul(a, b)
tensor([[[4., 4.],
         [4., 4.],
         [4., 4.]],
        [[4., 4.],
         [4., 4.],
         [4., 4.]],
        [[4., 4.],
         [4., 4.],
         [4., 4.]],
        [[4., 4.],
         [4., 4.],
         [4., 4.]],
        [[4., 4.],
         [4., 4.],
         [4., 4.]]])

同样的a和b,使用torch.mm相乘会报错

>>> torch.mm(a, b)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
RuntimeError: matrices expected, got 2D, 3D tensors at /pytorch/aten/src/TH/generic/THTensorMath.cpp:2065

以上这篇pytorch单维筛选 相乘的案例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

相关文章

  • Selenium自动化测试实现窗口切换

    Selenium自动化测试实现窗口切换

    这篇文章主要介绍了Selenium自动化测试实现窗口切换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-03-03
  • Python爬虫爬取百度搜索内容代码实例

    Python爬虫爬取百度搜索内容代码实例

    这篇文章主要介绍了Python爬虫爬取百度搜索内容代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06
  • PyCharm配置第三方镜像源的解决方法

    PyCharm配置第三方镜像源的解决方法

    在pycharm中配置第三方镜像后,秩序搜索需要的第三方库,就可以使用第三方镜像下载,速度不是一般的快,这篇文章主要介绍了PyCharm配置第三方镜像源,需要的朋友可以参考下
    2024-01-01
  • Python中常用操作字符串的函数与方法总结

    Python中常用操作字符串的函数与方法总结

    这篇文章主要介绍了Python中常用操作字符串的函数与方法总结,包括字符串的格式化输出与拼接等基础知识,需要的朋友可以参考下
    2016-02-02
  • python高阶爬虫实战分析

    python高阶爬虫实战分析

    这篇文章给大家分享了python高阶爬虫实战的相关实例内容以及技巧分析,有兴趣的朋友参考下。
    2018-07-07
  • opencv-python 读取图像并转换颜色空间实例

    opencv-python 读取图像并转换颜色空间实例

    今天小编就为大家分享一篇opencv-python 读取图像并转换颜色空间实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2019-12-12
  • CentOS7安装Python3的教程详解

    CentOS7安装Python3的教程详解

    这篇文章主要介绍了CentOS7安装Python3的教程,非常不错,具有一定的参考借鉴价值 ,需要的朋友可以参考下
    2019-04-04
  • Python协程操作之gevent(yield阻塞,greenlet),协程实现多任务(有规律的交替协作执行)用法详解

    Python协程操作之gevent(yield阻塞,greenlet),协程实现多任务(有规律的交替协作执行)用法详解

    这篇文章主要介绍了Python协程操作之gevent(yield阻塞,greenlet),协程实现多任务(有规律的交替协作执行)用法,结合实例形式较为详细的分析了协程的功能、原理及gevent、greenlet实现协程,以及协程实现多任务相关操作技巧,需要的朋友可以参考下
    2019-10-10
  • Django 添加静态文件的两种实现方法(必看篇)

    Django 添加静态文件的两种实现方法(必看篇)

    下面小编就为大家带来一篇Django 添加静态文件的两种实现方法(必看篇)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-07-07
  • Python2及Python3如何实现兼容切换

    Python2及Python3如何实现兼容切换

    这篇文章主要介绍了Python2及Python3如何实现兼容切换,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-09-09

最新评论