Python实现求解斐波那契第n项的解法(包括矩阵乘法+快速幂)

 更新时间:2021年04月15日 10:32:45   作者:owry5  
这篇文章主要介绍怎么使用Python求解斐波那契第n项,方法多样,逻辑清晰,代码简单详细,有这方面需要的朋友可以参考下

斐波那契数列

首先我们来定义一下斐波那契数列:

这里写图片描述

即数列的第0项:

这里写图片描述

算法一:递归

递归计算的节点个数是O(2ⁿ)的级别的,效率很低,存在大量的重复计算。

比如:

f(10) = f(9) + f(8)

f(9) = f(8) + f(7) 重复 8

f(8) = f(7) + f(6) 重复 7

时间复杂度是O(2ⁿ),极慢

def F1(n):
    if n <= 1: return max(n, 0)  # 前两项
    return F1(n-1)+F1(n-2)  # 递归

算法二:记忆化搜索

开一个大数组记录中间结果,如果一个状态被计算过,则直接查表,否则再递归计算。

总共有 n 个状态,计算每个状态的复杂度是 O(1),所以时间复杂度是 O(n)。但由于是递归计算,递归层数太多会爆栈。

res = [None]*100000
def F2(n):
    if n <= 1: return max(n, 0)
    if res[n]: return res[n]  # 如果已存在则直接查找返回结果
    res[n] = F2(n-1)+F2(n-2)  # 不存在则计算
    return res[n]

算法三:递推

开一个大数组,记录每个数的值。用循环递推计算。

总共计算 n 个状态,所以时间复杂度是 O(n)。但需要开一个长度是 n 的数组,内存将成为瓶颈。

def F3(n):
    if n <= 1: return max(n, 0)
    res = [0, 1]
    for i in range(2,n+1):
        res.append(res[i-1]+res[i-2])
    return res[n]

算法四:递归+滚动变量

比较优秀的一种解法。仔细观察我们会发现,递推时我们只需要记录前两项的值即可,没有必要记录所有值,所以我们可以用滚动变量递推。

时间复杂度还是 O(n),但空间复杂度变成了O(1)。

def F4(n):
    if n <= 1: return max(n, 0)
    fn, f0, f1 = 0, 1, 0  # fn为最终结果,f0为第0项,f1为第一项,
    for i in range(2, n+1):
        fn = f0 + f1  # 前两项和
        f0, f1 = f1, fn  # 递推变量
    return fn

算法五:矩阵乘法+快速幂

利用矩阵运算的性质将通项公式变成幂次形式,然后用平方倍增(快速幂)的方法求解第 n 项。

先说通式:

这里写图片描述

利用数学归纳法证明:

这里的a0,a1,a2是对应斐波那契的第几项

这里写图片描述

证毕。

所以我们想要的得到An,只需要求得Aⁿ,然后取第一行第二个元素即可。

如果只是简单的从0开始循环求n次方,时间复杂度仍然是O(n),并不比前面的快。我们可以考虑乘方的如下性质,即快速幂:

这里写图片描述

这样只需要 logn 次运算即可得到结果,时间复杂度为 O(logn)

def mul(a, b):  # 首先定义二阶矩阵乘法运算
    c = [[0, 0], [0, 0]]  # 定义一个空的二阶矩阵,存储结果
    for i in range(2):  # row
        for j in range(2):  # col
            for k in range(2):  # 新二阶矩阵的值计算
                c[i][j] += a[i][k] * b[k][j]
    return c
def F5(n):
    if n <= 1: return max(n, 0)
    res = [[1, 0], [0, 1]]  # 单位矩阵,等价于1
    A = [[1, 1], [1, 0]]  # A矩阵
    while n:
        if n & 1: res = mul(res, A)  # 如果n是奇数,或者直到n=1停止条件
        A = mul(A, A)  # 快速幂
        n >>= 1  # 整除2,向下取整
    return res[0][1]

总的来说不是很难,适合扩展思路。更多关于Python的资料请关注脚本之家其它相关文章!希望大家以后多多支持脚本之家!

相关文章

  • Python生态圈图像格式转换问题(推荐)

    Python生态圈图像格式转换问题(推荐)

    在Python生态圈里,最常用的图像库是PIL——尽管已经被后来的pillow取代,但因为pillow的API几乎完全继承了PIL,所以大家还是约定俗成地称其为PIL。这篇文章主要介绍了Python生态圈图像格式转换问题,需要的朋友可以参考下
    2019-12-12
  • Python命令启动Web服务器实例详解

    Python命令启动Web服务器实例详解

    这篇文章主要介绍了Python命令启动Web服务器实例详解的相关资料,需要的朋友可以参考下
    2017-02-02
  • pandas如何灵活增加新的空字段

    pandas如何灵活增加新的空字段

    这篇文章主要介绍了pandas如何灵活增加新的空字段问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教
    2023-08-08
  • python用海龟绘图写贪吃蛇游戏

    python用海龟绘图写贪吃蛇游戏

    这篇文章主要为大家详细介绍了python用海龟绘图写贪吃蛇游戏,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2021-06-06
  • Python Queue模块详解

    Python Queue模块详解

    这篇文章主要介绍了Python Queue模块详解,需要的朋友可以参考下
    2014-11-11
  • Python实现轻松防止屏幕截图的技巧分享

    Python实现轻松防止屏幕截图的技巧分享

    屏幕截图是一种常见的用于记录信息或者监控用户活动的方法,为了保护隐私和数据安全,可以通过使用Python编写一些防护措施来防止他人截取我们的屏幕,下面我们就来学习一下有哪些具体操作吧
    2023-12-12
  • python抓取多种类型的页面方法实例

    python抓取多种类型的页面方法实例

    在本篇文章里小编给大家整理的是关于python抓取多种类型的页面方法实例内容,有需要的朋友们可以学习下。
    2019-11-11
  • python安装scipy的方法步骤

    python安装scipy的方法步骤

    在本篇文章里小编给各位分享了关于python怎么安装scipy的具体方法和实例代码,需要的朋友们学习下。
    2019-06-06
  • python list等分并从等分的子集中随机选取一个数

    python list等分并从等分的子集中随机选取一个数

    这篇文章主要介绍了python list等分并从等分的子集中随机选取一个数,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2020-11-11
  • Python命名空间namespace及作用域原理解析

    Python命名空间namespace及作用域原理解析

    这篇文章主要介绍了Python命名空间namespace及作用域原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-06-06

最新评论