pytorch visdom安装开启及使用方法

 更新时间:2021年04月21日 08:59:44   作者:yilyil  
这篇文章主要介绍了pytorch visdom安装开启及使用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧

安装

conda activate ps 
pip install visdom

激活ps的环境,在指定的ps环境中安装visdom

开启

python -m visdom.server

在这里插入图片描述

浏览器输入红框内的网址

在这里插入图片描述

使用

1. 简单示例:一条线

from visdom import Visdom

# 创建一个实例
viz=Visdom()

# 创建一个直线,再把最新数据添加到直线上
# y x二维两个轴,win 创建一个小窗口,不指定就默认为大窗口,opts其他信息比如名称
viz.line([1,2,3,4],[1,2,3,4],win="train_loss",opts=dict(title='train_loss'))

# 更一般的情况,因为下面y x数据不存在,只是示例
#  append 添加到原来的后面,不然全部覆盖掉
# viz.line([loss.item()],[global_step],win="train_loss",update='append')

在这里插入图片描述

2. 简单示例:2条线

下面主要是[[y1],[y2]],[x] 两条映射,legend就是线条名称

from visdom import Visdom
viz=Visdom()
viz.line([[1,2],[5,6]],[1,2],win="loss_acc",opts=dict(title='train loss & acc',legend=['loss','acc']))

在这里插入图片描述

3. 显示图片

from visdom import Visdom
viz=Visdom()
# data 是一个batch
viz.image(data.view(-1,1,28,28),win='x')
viz.text(str(pred.datach().cpu().numpy()),win='pred',opts=dict(title='pred'))

4. 手写数字示例

动画效果图如下

在这里插入图片描述

import  torch
import  torch.nn as nn
import  torch.nn.functional as F
import  torch.optim as optim
from    torchvision import datasets, transforms

from visdom import Visdom

batch_size=200
learning_rate=0.01
epochs=10

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=True, download=True,
                   transform=transforms.Compose([
                       transforms.ToTensor(),
                       # transforms.Normalize((0.1307,), (0.3081,))
                   ])),
    batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('../data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        # transforms.Normalize((0.1307,), (0.3081,))
    ])),
    batch_size=batch_size, shuffle=True)



class MLP(nn.Module):

    def __init__(self):
        super(MLP, self).__init__()

        self.model = nn.Sequential(
            nn.Linear(784, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 200),
            nn.LeakyReLU(inplace=True),
            nn.Linear(200, 10),
            nn.LeakyReLU(inplace=True),
        )

    def forward(self, x):
        x = self.model(x)

        return x

device = torch.device('cuda:0')
net = MLP().to(device)
optimizer = optim.SGD(net.parameters(), lr=learning_rate)
criteon = nn.CrossEntropyLoss().to(device)

viz = Visdom()

viz.line([0.], [0.], win='train_loss', opts=dict(title='train loss'))
viz.line([[0.0, 0.0]], [0.], win='test', opts=dict(title='test loss&acc.',
                                                   legend=['loss', 'acc.']))
global_step = 0

for epoch in range(epochs):

    for batch_idx, (data, target) in enumerate(train_loader):
        data = data.view(-1, 28*28)
        data, target = data.to(device), target.cuda()

        logits = net(data)
        loss = criteon(logits, target)

        optimizer.zero_grad()
        loss.backward()
        # print(w1.grad.norm(), w2.grad.norm())
        optimizer.step()

        global_step += 1
        viz.line([loss.item()], [global_step], win='train_loss', update='append')

        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                       100. * batch_idx / len(train_loader), loss.item()))


    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data = data.view(-1, 28 * 28)
        data, target = data.to(device), target.cuda()
        logits = net(data)
        test_loss += criteon(logits, target).item()

        pred = logits.argmax(dim=1)
        correct += pred.eq(target).float().sum().item()

    viz.line([[test_loss, correct / len(test_loader.dataset)]],
             [global_step], win='test', update='append')
    viz.images(data.view(-1, 1, 28, 28), win='x')
    viz.text(str(pred.detach().cpu().numpy()), win='pred',
             opts=dict(title='pred'))

    test_loss /= len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        100. * correct / len(test_loader.dataset)))

到此这篇关于pytorch visdom安装开启及使用方法的文章就介绍到这了,更多相关pytorch visdom使用内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 用Python写冒泡排序代码

    用Python写冒泡排序代码

    本文给大家分享一段代码使用python写一个冒泡排序小程序,代码非常简单,感兴趣的朋友参考下吧
    2016-04-04
  • tensorflow 2.1.0 安装与实战教程(CASIA FACE v5)

    tensorflow 2.1.0 安装与实战教程(CASIA FACE v5)

    这篇文章主要介绍了tensorflow 2.1.0 安装与实战(CASIA FACE v5),本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2020-06-06
  • 如何利用python实现列表嵌套字典取值

    如何利用python实现列表嵌套字典取值

    这篇文章主要介绍了如何利用python实现列表嵌套字典取值,首先通过将列表backup_unit_id全部提取出来,确定需要取值的对象展开文章内容,感兴趣的朋友可以看一下
    2022-06-06
  • python实现接口并发测试脚本

    python实现接口并发测试脚本

    这篇文章主要为大家详细介绍了python实现接口并发测试脚本,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2019-06-06
  • 在Python中分别打印列表中的每一个元素方法

    在Python中分别打印列表中的每一个元素方法

    今天小编就为大家分享一篇在Python中分别打印列表中的每一个元素方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-11-11
  • python回归分析逻辑斯蒂模型之多分类任务详解

    python回归分析逻辑斯蒂模型之多分类任务详解

    这篇文章主要为大家介绍了python回归分析逻辑斯蒂模型之多分类任务详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-09-09
  • Python中日期和时间的用法超强总结

    Python中日期和时间的用法超强总结

    时间无疑是生活各个方面中最关键的因素之一,因此,记录和跟踪时间变得非常重要。在 Python 中,可以通过其内置库跟踪日期和时间。今天我们来介绍关于 Python 中的日期和时间,一起来了解如何使用time和datetime模块查找和修改日期和时间
    2022-10-10
  • 检测python爬虫时是否代理ip伪装成功的方法

    检测python爬虫时是否代理ip伪装成功的方法

    这篇文章主要介绍了检测python爬虫时是否代理ip伪装成功的方法以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持脚本之家。,需要的朋友可以参考下
    2019-07-07
  • 详解基于python的多张不同宽高图片拼接成大图

    详解基于python的多张不同宽高图片拼接成大图

    这篇文章主要介绍了详解基于python的多张不同宽高图片拼接成大图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-09-09
  • Python NumPy 数组索引的示例详解

    Python NumPy 数组索引的示例详解

    数组索引是指使用方括号([])来索引数组值,numpy提供了比常规的python序列更多的索引工具,除了按整数和切片索引之外,数组可以由整数数组索引、布尔索引及花式索引,这篇文章主要介绍了Python NumPy 数组索引,需要的朋友可以参考下
    2023-01-01

最新评论