go等待一组协程结束的操作方式

 更新时间:2021年05月04日 09:08:55   作者:cj_286  
这篇文章主要介绍了go等待一组协程结束的操作方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

go提供了sync包和channel来解决协程同步和通讯。

方式1:

sync.WaitGroup是等待一组协程结束,sync.WaitGroup只有3个方法,Add()添加一个计数,Done()减去一个计数,Wait()阻塞直到所有任务完成。

package main
import (
	"fmt"
	"sync"
	"time"
)
var wg sync.WaitGroup //定义一个同步等待的组
func task(i int){
	fmt.Println("task...",i)
	//耗时操作任务,网络请求,读取文件
	time.Sleep(time.Second)
	wg.Done() //减去一个计数
}
func main(){
	for i:= 0;i<10;i++{
		wg.Add(1) //添加一个计数
		go task(i)
	}
	wg.Wait() //阻塞直到所有任务完成
	fmt.Println("over")
}

运行结果:

task... 9

task... 4

task... 6

task... 0

task... 7

task... 5

task... 1

task... 2

task... 8

task... 3

over

方式2:

利用缓冲信道channel协程之间通讯,其阻塞等待功能实现等待一组协程结束,不能保证其goroutine按照顺序执行

package main
import (
 "fmt"
)
var ch = make(chan int,10)
func task(i int){
 fmt.Println("task...",i)
 ch <- i
}
func main(){
 for i:= 0;i<10;i++{
  go task(i)
 }
 for i:= 0;i<10;i++{
  <- ch
 } 
 fmt.Println("over")
}

运行结果:

task... 9

task... 0

task... 1

task... 2

task... 6

task... 7

task... 3

task... 4

task... 8

task... 5

over

方式3:

利用无缓冲的信道channel协程之间通讯,其阻塞等待功能实现等待一组协程结束,保证了其goroutine按照顺序执行

package main
import (
 "fmt"
 "time"
)
var ch = make(chan int)
func task(i int){
 fmt.Println("task...",i)
 time.Sleep(time.Second)
  <- ch
}
func main(){
 for i:= 0;i<10;i++{
  go task(i)
  ch <- i
 }
 fmt.Println("over")
}

运行结果:

task... 0

task... 1

task... 2

task... 3

task... 4

task... 5

task... 6

task... 7

task... 8

task... 9

over

补充:Go中使用Channel等待所有协程结束

让main方法等待所有协程执行完毕再退出。可能一般思路是设置一个共有变量,然后通过修改这个变量的状态。这是通过共享变量来通信的方式,而go要做的是,通过通信来共享内存。

1. 按顺序执行

每次通信进行成对通信,当main向协程发送一个写channel时,同时也等待协程返回一个读channel。

这两个channel一定是成对的,所以构造一个结构体

type worker struct {
    in chan int
    done chan bool
}
 
func chanDemo1(){
    var workers [10]worker 
    for i := 0; i < 10; i++ {
        workers[i] = createWorker1(i)
    }
 
    for i := 0; i < 10; i++ {
        workers[i].in <- 'a' + i
        <- workers[i].done
    }
 
    for i := 0; i < 10; i++ {
        workers[i].in <- 'A' + i
        <- workers[i].done
    } 
}
 
func createWorker1(id int) worker {
    work := worker{
        in: make(chan int),
        done: make(chan bool),
    }
    go func() {
        for {
            fmt.Printf("Work %d receiverd %c\n", id, <- work.in)
            work.done <- true
        }
    }()
    return  work
} 
 
func main(){
    chanDemo1()
    fmt.Println("over")
}

这个执行结果完全是按照0-9,先小写再大写的顺序

如果这样顺序执行,还要协程干啥

2. 批量处理

type worker struct {
    in chan int
    done chan bool
}
 
func chanDemo1(){
    var workers [10]worker
    for i := 0; i < 10; i++ {
        workers[i] = createWorker1(i)
    }
    for i := 0; i < 10; i++ {
        workers[i].in <- 'a' + i
    }
    for _, worker  := range workers {
        <- worker.done
    }
    for i := 0; i < 10; i++ {
        workers[i].in <- 'A' + i
    }
    for _, worker  := range workers {
        <- worker.done
    }
}
 
func createWorker1(id int) worker {
    work := worker{
        in: make(chan int),
        done: make(chan bool),
    }
    go func() {
        for {
            fmt.Printf("Work %d receiverd %c\n", id, <- work.in)
            work.done <- true
        }
    }()
    return  work
}

这样的话,先打印小写,再打印大写,但是大小写时顺序不固定

3. 完全随机

func chanDemo1(){
    var workers [10]worker
    for i := 0; i < 10; i++ {
        workers[i] = createWorker1(i)
    }
    for i := 0; i < 10; i++ {
        workers[i].in <- 'a' + i
    }
 
    for i := 0; i < 10; i++ {
        workers[i].in <- 'A' + i
    }
    for _, worker  := range workers {
        <- worker.done
        <- worker.done
    }
}
 
func createWorker1(id int) worker {
    work := worker{
        in: make(chan int),
        done: make(chan bool),
    }
    go func() {
        for {
            fmt.Printf("Work %d receiverd %c\n", id, <- work.in)
 
            // 再开一个协程
            go func() { work.done <- true}()
        }
    }()
    return  work
}

这种方式就是完全随机了

使用channel进行树的遍历

func (node *Node) TraverseFunc(f func(*Node)){
    if node == nil{
        return
    }
    node.Left.TraverseFunc(f)
    f(node)
    node.Right.TraverseFunc(f)
}
 
func (node *Node) TraverseWithChannel() chan *Node{
    out := make(chan *Node)
    go func() {
        node.TraverseFunc(func(node *Node) {
            out <- node
        })
        close(out)
    }()
    return out
}
 
func main(){
    var root Node
    root = Node{Value:3}
    root.Left = &Node{}
    root.Right = &Node{5,nil,nil}
    root.Right.Left = new(Node)
    root.Left.Right =&Node{6,nil,nil}
    root.Traverse()
 
    c:=root.TraverseWithChannel()
    maxNode := 0
    for node := range c{
        if node.Value > maxNode{
            maxNode = node.Value
        }
    }
    fmt.Println("max node value:", maxNode)
 

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

  • Golang中禁止拷贝的实现代码

    Golang中禁止拷贝的实现代码

    这篇文章主要给大家介绍了关于Golang中实现禁止拷贝的相关资料,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2018-11-11
  • 解决GOPATH在GOLAND中的坑

    解决GOPATH在GOLAND中的坑

    这篇文章主要介绍了解决GOPATH在GOLAND中的坑,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • 以alpine作为基础镜像构建Golang可执行程序操作

    以alpine作为基础镜像构建Golang可执行程序操作

    这篇文章主要介绍了以alpine作为基础镜像构建Golang可执行程序操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-12-12
  • Go语言实现的web爬虫实例

    Go语言实现的web爬虫实例

    这篇文章主要介绍了Go语言实现的web爬虫,实例分析了web爬虫的原理与Go语言的实现技巧,具有一定参考借鉴价值,需要的朋友可以参考下
    2015-02-02
  • Golang通道的无阻塞读写的方法示例

    Golang通道的无阻塞读写的方法示例

    这篇文章主要介绍了Golang通道的无阻塞读写的方法示例,详细的介绍了哪些情况会存在阻塞,以及如何使用select解决阻塞,非常具有实用价值,需要的朋友可以参考下
    2018-11-11
  • go语言制作的zip压缩程序

    go语言制作的zip压缩程序

    这篇文章主要介绍了go语言制作的zip压缩程序,其主体思路是首先创建一个读写缓冲,然后用压缩器包装该缓冲,用Walk方法来将所有目录下的文件写入zip,有需要的小伙伴参考下。
    2015-03-03
  • Go语言常见哈希函数的使用

    Go语言常见哈希函数的使用

    哈希表(Hash table,也叫散列表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。具体的介绍网上有很详细的描述,如闲聊哈希表 ,这里就不再累述了;
    2015-03-03
  • Go语言eclipse环境搭建图文教程

    Go语言eclipse环境搭建图文教程

    这篇文章主要介绍了Go语言eclipse环境搭建的方法,结合图文形式详细分析了在eclipse环境下开发Go语言所涉及的组件下载、安装及相关设置方法,需要的朋友可以参考下
    2016-07-07
  • 深入理解Go语言中的数组和切片

    深入理解Go语言中的数组和切片

    Go语言中的数组大概相当与C/C++中的数组,固定大小,不能够动态扩展大小,而切片大概相当与C++中的Vector,可以动态扩展大小,当大小超过容量时,重新分配一块内存,然后将数据复制到新的内存区域。下面我们通过几个问题来更好理解golang 的数组和切片,一起来看看吧。
    2016-09-09
  • Golang中Bit数组的实现方式

    Golang中Bit数组的实现方式

    这篇文章主要介绍了Golang中Bit数组的实现方式,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-04-04

最新评论