Python绘图库Matplotlib的基本用法

 更新时间:2021年05月06日 10:00:35   作者:Apple-yeran  
这篇文章主要介绍了Python绘图库Matplotlib的基本用法,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下

一、前言

Matplotlib是Python的绘图库,不仅具备强大的绘图功能,还能够在很多平台上使用,和Jupyter Notebook有极强的兼容性。

二、线型图

import matplotlib.pyplot as plt
import numpy as np

# 指定生成随机数的种子,这样每次运行得到的随机数都是相同的
np.random.seed(42)
# 生成30个满足平均值为0、方差为1的正态分布的样本
x = np.random.randn(30)
# plot本意有“绘制(图表)”的意思,所以下面这一行代码是绘制图表。r指定绘制的线条颜色为红色,o指定标记实际点使用的形状为圆形,--指定线条形状为虚线
plt.plot(x, "r--o")
# 显示图表
plt.show()

在这里插入图片描述

三、线条颜色、标记形状和线型

线条颜色常用参数:

  • “b”:指定绘制的线条颜色为蓝色。
  • “g”:指定绘制的线条颜色为绿色。
  • “r”:指定绘制的线条颜色为红色。
  • “c”:指定绘制的线条颜色为蓝绿色。
  • “m”:指定绘制的线条颜色为洋红色。
  • “y”:指定绘制的线条颜色为黄色。
  • “k”:指定绘制的线条颜色为黑色。
  • “w”:指定绘制的线条颜色为白色。

标记形状常用参数:

  • “o”:指定标记实际点使用的形状为圆形。
  • “*”:指定标记实际点使用的形状为星形。
  • “+”:指定标记实际点使用的形状为加号形状。
  • “x”:指定标记实际点使用的形状为x形状。

线型常用参数:

  • “-”:指定线条形状为实线。
  • “–”:指定线条形状为虚线。
  • “-.”:指定线条形状为点实线。
  • “:”:指定线条形状为点线。
import matplotlib.pyplot as plt
import numpy as np

# 未指定种子的值,所以最终产生的随机数不同
# randn()生成30个满足平均值为0、方差为1的正态分布的样本
a = np.random.randn(30)
b = np.random.randn(30)
c = np.random.randn(30)
d = np.random.randn(30)

# a:红色,虚线,圆形;b:蓝色,实线,星号;c:绿色,点实线,加号;d:洋红色,点线,x形状
plt.plot(a, "r--o", b, "b-*", c, "g-.+", d, "m:x")
plt.show(

在这里插入图片描述

四、标签和图例

为了让绘制的图像更易理解,我们可以增加一些绘制图像的说明,一般是添加图像的轴标签图例,如下面的例子所示:

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(42)
x = np.random.randn(30)
y = np.random.randn(30)

# 图表标题
plt.title("Example")
# 图表标签
plt.xlabel("X")
plt.ylabel("Y")

# X, Y后面的逗号去掉会报出警告
X, = plt.plot(x, "r--o")
Y, = plt.plot(y, "b-*")
# 图例显示(显示图片右上角的图例)
# legend()有两个列表参数,第一个列表参数是图中实际使用的标记和线性,第二个列表参数是对应图例的文字描述
# legend本意:传奇、图例、解释、说明,这里是图例的意思
plt.legend([X, Y], ["X", "Y"])

plt.show()

在这里插入图片描述

五、子图

当需要将多个图像同时在不同的位置显示,则需要用到子图(Subplot)的功能。

import matplotlib.pyplot as plt
import numpy as np

# 未指定随机数种子的值
a = np.random.randn(30)
b = np.random.randn(30)
c = np.random.randn(30)
d = np.random.randn(30)

# 定义一个实例fig,相当于子图最外面的大图
fig = plt.figure()
# 向fig实例中添加需要的子图,前两个参数表示把大图分成了2行2列,最后一个参数表示使用哪一张子图进行绘制
ax1 = fig.add_subplot(2, 2, 1)
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
ax4 = fig.add_subplot(2, 2, 4)

# 设置图例
A, = ax1.plot(a, "r--o")
ax1.legend([A], ["A"])
B, = ax2.plot(b, "b-*")
ax2.legend([B], ["B"])
C, = ax3.plot(c, "g-.+")
ax3.legend([C], ["C"])
D, = ax4.plot(d, "m:x")
ax4.legend([D], ["D"])

plt.show()

在这里插入图片描述

六、散点图

如果需要获取的是一些散点数据,则可以通过绘制散点图(Scatter)来展示数据的分布和布局。

import matplotlib.pyplot as plt
import numpy as np

# 设置随机数种子的值
np.random.seed(42)
x = np.random.randn(30)
y = np.random.randn(30)

# 散点图,scatter()的参数必须同时含有x, y
plt.scatter(x, y, c = 'g', marker='o', label = "(X, Y)")
# 散点图的标题
plt.title("Example")
# 设置坐标轴的标签
plt.xlabel("X")
plt.ylabel("Y")
# 设置图例,loc=0表示使用最好的位置,loc=1强制图例使用图中右上角的位置,loc=2强制使用左上角位置,loc=3强制使用左下角位置,loc=4强制使用右下角位置
plt.legend(loc = 1)

# 显示图像
plt.show()

在这里插入图片描述

scatter()方法中特别需要注意的参数:

  • “c”:指定散点图中绘制的参数使用哪种颜色,这与第2部分线条常用参数相,所以这里g表示设置为绿色。
  • “marker”:指定散点图中绘制的参数点使用哪种形状,和第2部分标记形状常用参数相同,所以这里o表示设置为圆形。
  • “label”:指定在散点图中绘制的参数使用的图例,这里与第3部分图例有所不同,注意区别。

七、直方图

直方图(Histogram)是一种统计报告图,通过使用一些列高度不等的纵向条纹或直方表示数据分布的情况,一般用横轴表示数据类型,纵轴表示分布情况。下面来看具体实例:

import matplotlib.pyplot as plt
import numpy as np

# 指定随机数种子的值
np.random.seed(42)
x = np.random.randn(1000)

# 直方图,bins表示绘制的直方图的条纹的数量;color表示直方图条纹的颜色,g表示绿色
plt.hist(x, bins = 20, color = 'g')
# 设置标题
plt.title("Example")
# 设置坐标轴标签
plt.xlabel("X")
plt.ylabel("Y")

# 显示图像
plt.show()

在这里插入图片描述

八、饼图

import matplotlib.pyplot as plt

# 标签
labels = ['Dos', 'Cats', 'Birds']
# sizes的三个数字确定了每部分数据系列在整个圆形中的占比
sizes = [15, 50, 35]

# 饼图,explode定义每部分数据系列之间的间隔,设置两个0和一个0.1,就能突出第三部分;autopct将sizes中的数据以所定义的浮点数精度进行显示;
# startangle是绘制第一块饼图时,该饼图与X轴正方向的夹角度数,这是设置90度,默认是0度。
plt.pie(sizes, explode = (0, 0, 0.1), labels = labels, autopct = '%1.1f%%', startangle = 90)
# 下面的一行代码必须存在,用于使X轴和Y轴的刻度时刻保持一致,只有这样,最后得到的饼图才是圆的
plt.axis('equal')

# 显示图像
plt.show()

在这里插入图片描述

到此这篇关于Python绘图库Matplotlib的基本用法的文章就介绍到这了,更多相关Python Matplotlib的用法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • python字符串与url编码的转换实例

    python字符串与url编码的转换实例

    今天小编就为大家分享一篇python字符串与url编码的转换实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-05-05
  • Python中字典常用操作的示例详解

    Python中字典常用操作的示例详解

    字典是Python必用且常用的数据结构,本文主要为大家梳理了一下常用的字典操作:初始化、合并字典、字典转Pandas等,需要的可以参考一下
    2022-05-05
  • Python编程实现小姐姐跳舞并生成词云视频示例

    Python编程实现小姐姐跳舞并生成词云视频示例

    本文用Python做了一个词云视频,以另一种角度来看小姐姐跳舞视频左半部分是小姐姐跳舞视频,右半部分是根据动作生成的的词云视频,有需要的朋友可以借鉴参考下
    2021-10-10
  • 一文搞懂​​​​​​​python可迭代对象,迭代器,生成器,协程

    一文搞懂​​​​​​​python可迭代对象,迭代器,生成器,协程

    这篇文章主要介绍了一文搞懂​​​​​​​python可迭代对象,迭代器,生成器,协程,微博吱嘎部分围绕主题展开详细介绍,需要的小伙伴可以参考一下
    2022-05-05
  • pyramid配置session的方法教程

    pyramid配置session的方法教程

    这篇文章主要介绍了pyramid如何配置session,大家可以参考使用
    2013-11-11
  • Python使用ctypes调用C/C++的方法

    Python使用ctypes调用C/C++的方法

    今天小编就为大家分享一篇关于Python使用ctypes调用C/C++的方法,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧
    2019-01-01
  • python实战之德州扑克第二步-判断牌型

    python实战之德州扑克第二步-判断牌型

    这篇文章主要介绍了python实战之德州扑克第二步-判断牌型,文中有非常详细的代码示例,对正在学习python的小伙伴们有非常好的帮助,需要的朋友可以参考下
    2021-04-04
  • Python数据分析之 Pandas Dataframe合并和去重操作

    Python数据分析之 Pandas Dataframe合并和去重操作

    这篇文章主要介绍了Python数据分析之 Pandas Dataframe合并和去重操作,文章基于python的相关资料展开详细的内容介绍,需要的小伙伴可以参考一下
    2022-05-05
  • 使用Python实现毫秒级抢单功能

    使用Python实现毫秒级抢单功能

    年中购物618大狂欢开始了,各大电商又开始了大力度的折扣促销,我们的小胖又给大家谋了一波福利,淘宝APP直接搜索:小胖发福利,每天领取三次粉丝专属现金大红包。这篇文章主要介绍了用Python完成毫秒级抢单,助你秒杀淘宝大单,需要的朋友可以参考下
    2019-06-06
  • Python dict和defaultdict使用实例解析

    Python dict和defaultdict使用实例解析

    这篇文章主要介绍了Python dict和defaultdict使用实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-03-03

最新评论