pytorch 中autograd.grad()函数的用法说明

 更新时间:2021年05月12日 10:42:21   作者:waitingwinter  
这篇文章主要介绍了pytorch 中autograd.grad()函数的用法说明,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧

我们在用神经网络求解PDE时, 经常要用到输出值对输入变量不是Weights和Biases)求导; 在训练WGAN-GP 时, 也会用到网络对输入变量的求导。

以上两种需求, 均可以用pytorch 中的autograd.grad() 函数实现。

autograd.grad(outputs, inputs, grad_outputs=None, retain_graph=None, create_graph=False, only_inputs=True, allow_unused=False)

outputs: 求导的因变量(需要求导的函数)

inputs: 求导的自变量

grad_outputs: 如果 outputs为标量,则grad_outputs=None,也就是说,可以不用写; 如果outputs 是向量,则此参数必须写,不写将会报如下错误:

那么此参数究竟代表着什么呢?

先假设 为一维向量, 即可设自变量因变量分别为 , 其对应的 Jacobi 矩阵为

grad_outputs 是一个shape 与 outputs 一致的向量, 即

在给定grad_outputs 之后,真正返回的梯度为

为方便下文叙述我们引入记号

其次假设 ,第i个列向量对应的Jacobi矩阵为

此时的grad_outputs 为(维度与outputs一致)

由第一种情况, 我们有

也就是说对输出变量的列向量求导,再经过权重累加。

沿用第一种情况记号

, 其中每一个 均由第一种方法得出,

即对输入变量列向量求导,之后按照原先顺序排列即可。

retain_graph: True 则保留计算图, False则释放计算图

create_graph: 若要计算高阶导数,则必须选为True

allow_unused: 允许输入变量不进入计算

下面我们看一下具体的例子:

import torch
from torch import autograd
 
x = torch.rand(3, 4)
x.requires_grad_()

观察 x 为

不妨设 y 是 x 所有元素的和, 因为 y是标量,故计算导数不需要设置grad_outputs

y = torch.sum(x)
grads = autograd.grad(outputs=y, inputs=x)[0]
print(grads)

结果为

若y是向量

y = x[:,0] +x[:,1]
# 设置输出权重为1
grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.ones_like(y))[0]
print(grad)
# 设置输出权重为0
grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.zeros_like(y))[0]
print(grad)

结果为

最后, 我们通过设置 create_graph=True 来计算二阶导数

y = x ** 2
grad = autograd.grad(outputs=y, inputs=x, grad_outputs=torch.ones_like(y), create_graph=True)[0]
grad2 = autograd.grad(outputs=grad, inputs=x, grad_outputs=torch.ones_like(grad))[0]
print(grad2)

结果为

综上,我们便搞清楚了它的求导机制。

补充:pytorch学习笔记:自动微分机制(backward、torch.autograd.grad)

一、前言

神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情。

而深度学习框架可以帮助我们自动地完成这种求梯度运算。

Pytorch一般通过反向传播 backward方法 实现这种求梯度计算。该方法求得的梯度将存在对应自变量张量的grad属性下。

除此之外,也能够调用torch.autograd.grad函数来实现求梯度计算。

这就是Pytorch的自动微分机制。

二、利用backward方法求导数

backward方法通常在一个标量张量上调用,该方法求得的梯度将存在对应自变量张量的grad属性下。如果调用的张量非标量,则要传入一个和它同形状的gradient参数张量。相当于用该gradient参数张量与调用张量作向量点乘,得到的标量结果再反向传播。

1, 标量的反向传播

import numpy as np 
import torch 
# f(x) = a*x**2 + b*x + c的导数
x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c 
y.backward()
dy_dx = x.grad
print(dy_dx)

输出:

tensor(-2.)

2, 非标量的反向传播

import numpy as np 
import torch 
# f(x) = a*x**2 + b*x + c
x = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c 
gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])
print("x:\n",x)
print("y:\n",y)
y.backward(gradient = gradient)
x_grad = x.grad
print("x_grad:\n",x_grad)

输出:

x:

tensor([[0., 0.],

[1., 2.]], requires_grad=True)

y:

tensor([[1., 1.],

[0., 1.]], grad_fn=<AddBackward0>)

x_grad:

tensor([[-2., -2.],

[ 0., 2.]])

3, 非标量的反向传播可以用标量的反向传播实现

import numpy as np 
import torch 
# f(x) = a*x**2 + b*x + c
x = torch.tensor([[0.0,0.0],[1.0,2.0]],requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c 
gradient = torch.tensor([[1.0,1.0],[1.0,1.0]])
z = torch.sum(y*gradient)
print("x:",x)
print("y:",y)
z.backward()
x_grad = x.grad
print("x_grad:\n",x_grad)

输出:

x: tensor([[0., 0.],

[1., 2.]], requires_grad=True)

y: tensor([[1., 1.],

[0., 1.]], grad_fn=<AddBackward0>)

x_grad:

tensor([[-2., -2.],

[ 0., 2.]])

三、利用autograd.grad方法求导数

import numpy as np 
import torch 
# f(x) = a*x**2 + b*x + c的导数
x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
y = a*torch.pow(x,2) + b*x + c

# create_graph 设置为 True 将允许创建更高阶的导数 
dy_dx = torch.autograd.grad(y,x,create_graph=True)[0]
print(dy_dx.data)
# 求二阶导数
dy2_dx2 = torch.autograd.grad(dy_dx,x)[0] 
print(dy2_dx2.data)

输出:

tensor(-2.)

tensor(2.)

import numpy as np 
import torch 
x1 = torch.tensor(1.0,requires_grad = True) # x需要被求导
x2 = torch.tensor(2.0,requires_grad = True)
y1 = x1*x2
y2 = x1+x2

# 允许同时对多个自变量求导数
(dy1_dx1,dy1_dx2) = torch.autograd.grad(outputs=y1,
                inputs = [x1,x2],retain_graph = True)
print(dy1_dx1,dy1_dx2)
# 如果有多个因变量,相当于把多个因变量的梯度结果求和
(dy12_dx1,dy12_dx2) = torch.autograd.grad(outputs=[y1,y2],
            inputs = [x1,x2])
print(dy12_dx1,dy12_dx2)

输出:

tensor(2.) tensor(1.)

tensor(3.) tensor(2.)

四、利用自动微分和优化器求最小值

import numpy as np 
import torch 
# f(x) = a*x**2 + b*x + c的最小值
x = torch.tensor(0.0,requires_grad = True) # x需要被求导
a = torch.tensor(1.0)
b = torch.tensor(-2.0)
c = torch.tensor(1.0)
optimizer = torch.optim.SGD(params=[x],lr = 0.01)

def f(x):
    result = a*torch.pow(x,2) + b*x + c 
    return(result)
for i in range(500):
    optimizer.zero_grad()
    y = f(x)
    y.backward()
    optimizer.step()   
    
print("y=",f(x).data,";","x=",x.data)

输出:

y= tensor(0.) ; x= tensor(1.0000)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。如有错误或未考虑完全的地方,望不吝赐教。

相关文章

  • PyCharm利用pydevd-pycharm实现Python远程调试的详细过程

    PyCharm利用pydevd-pycharm实现Python远程调试的详细过程

    这篇文章主要介绍了PyCharm利用pydevd-pycharm实现Python远程调试,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-09-09
  • windows下python连接oracle数据库

    windows下python连接oracle数据库

    这篇文章主要为大家详细介绍了windows下python连接oracle数据库,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
    2017-06-06
  • Python文档生成工具pydoc使用介绍

    Python文档生成工具pydoc使用介绍

    这篇文章主要介绍了Python文档生成工具pydoc使用介绍,本文讲解了基本用法、获取帮助的方法、生成的文档效果图等内容,需要的朋友可以参考下
    2015-06-06
  • Python实现中英文全文搜索的示例

    Python实现中英文全文搜索的示例

    这篇文章主要介绍了Python实现中英文全文搜索的示例,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下
    2020-12-12
  • Python 生成 -1~1 之间的随机数矩阵方法

    Python 生成 -1~1 之间的随机数矩阵方法

    今天小编就为大家分享一篇Python 生成 -1~1 之间的随机数矩阵方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-08-08
  • Python基础语法之容器详解

    Python基础语法之容器详解

    这篇文章主要介绍了Python基础语法之容器的相关资料,帮助大家更好的理解和学习python,感兴趣的朋友可以了解下,希望能够给你带来帮助
    2021-09-09
  • Python中模块(Module)和包(Package)的区别详解

    Python中模块(Module)和包(Package)的区别详解

    这篇文章主要介绍了Python中模块(Module)和包(Package)的区别详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-08-08
  • Python3 itchat实现微信定时发送群消息的实例代码

    Python3 itchat实现微信定时发送群消息的实例代码

    使用微信,定时往指定的微信群里发送指定信息。接下来通过本文给大家分享Python3 itchat实现微信定时发送群消息的实例代码,需要的朋友可以参考下
    2019-07-07
  • python数据类型_元组、字典常用操作方法(介绍)

    python数据类型_元组、字典常用操作方法(介绍)

    下面小编就为大家带来一篇python数据类型_元组、字典常用操作方法(介绍)。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧
    2017-05-05
  • Python字符串str超详细详解(适合新手!)

    Python字符串str超详细详解(适合新手!)

    str函数是Python的内置函数,它将参数转换成字符串类型,即人适合阅读的形式,下面这篇文章主要给大家介绍了关于Python字符串str超详细详解的相关资料,文中通过实例代码介绍的非常详细,需要的朋友可以参考下
    2022-11-11

最新评论