Python集成学习之Blending算法详解

 更新时间:2021年05月13日 11:33:57   作者:GoAl的博客  
集成学习(又称模型融合)就是结合若干个体分类器(基学习器)进行综合预测,各个个体学习器通常是弱学习器.集成学习相较于个体学习在预测准确率以及稳定性上都有很大的提高.文中有非常详细的代码示例哦,需要的朋友可以参考下

一、前言

普通机器学习:从训练数据中学习一个假设。

集成方法:试图构建一组假设并将它们组合起来,集成学习是一种机器学习范式,多个学习器被训练来解决同一个问题。

集成方法分类为:

Bagging(并行训练):随机森林

Boosting(串行训练):Adaboost; GBDT; XgBoost

Stacking:

Blending:

或者分类为串行集成方法和并行集成方法

1.串行模型:通过基础模型之间的依赖,给错误分类样本一个较大的权重来提升模型的性能。

2.并行模型的原理:利用基础模型的独立性,然后通过平均能够较大地降低误差

二、Blending介绍

训练数据划分为训练和验证集+新的训练数据集和新的测试集

将训练数据进行划分,划分之后的训练数据一部分训练基模型,一部分经模型预测后作为新的特征训练元模型。
测试数据同样经过基模型预测,形成新的测试数据。最后,元模型对新的测试数据进行预测。Blending框架图如下所示:
注意:其是在stacking的基础上加了划分数据

三、Blending流程图

在这里插入图片描述

  • 第一步:将原始训练数据划分为训练集和验证集。
  • 第二步:使用训练集对训练T个不同的模型。
  • 第三步:使用T个基模型,对验证集进行预测,结果作为新的训练数据。
  • 第四步:使用新的训练数据,训练一个元模型。
  • 第五步:使用T个基模型,对测试数据进行预测,结果作为新的测试数据。
  • 第六步:使用元模型对新的测试数据进行预测,得到最终结果。

在这里插入图片描述

四、案例

相关工具包加载

import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
plt.style.use("ggplot")
%matplotlib inline
import seaborn as sns



创建数据

from sklearn import datasets 
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
data, target = make_blobs(n_samples=10000, centers=2, random_state=1, cluster_std=1.0 )
## 创建训练集和测试集
X_train1,X_test,y_train1,y_test = train_test_split(data, target, test_size=0.2, random_state=1)
## 创建训练集和验证集
X_train,X_val,y_train,y_val = train_test_split(X_train1, y_train1, test_size=0.3, random_state=1)
print("The shape of training X:",X_train.shape)
print("The shape of training y:",y_train.shape)
print("The shape of test X:",X_test.shape)
print("The shape of test y:",y_test.shape)
print("The shape of validation X:",X_val.shape)
print("The shape of validation y:",y_val.shape)
 

设置第一层分类器

from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier

clfs = [SVC(probability=True),RandomForestClassifier(n_estimators=5,n_jobs=-1,criterion='gini'),KNeighborsClassifier()]



设置第二层分类器

from sklearn.linear_model import LinearRegression
lr = LinearRegression()



第一层

val_features = np.zeros((X_val.shape[0],len(clfs)))
test_features = np.zeros((X_test.shape[0],len(clfs)))

for i,clf in enumerate(clfs):
    clf.fit(X_train,y_train)
    val_feature = clf.predict_proba(X_val)[:,1]
    test_feature = clf.predict_proba(X_test)[:,1]
    val_features[:,i] = val_feature
    test_features[:,i] = test_feature



第二层

lr.fit(val_features,y_val)



输出预测的结果

lr.fit(val_features,y_val)
from sklearn.model_selection import cross_val_score
cross_val_score(lr,test_features,y_test,cv=5)
 

到此这篇关于Python集成学习之Blending算法详解的文章就介绍到这了,更多相关Python Blending算法内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • 举例讲解Python中的算数运算符的用法

    举例讲解Python中的算数运算符的用法

    这篇文章主要介绍了举例讲解Python中的算数运算符的用法,是Python学习当中的基础知识,需要的朋友可以参考下
    2015-05-05
  • Python中捕获键盘的方式详解

    Python中捕获键盘的方式详解

    这篇文章主要介绍了Python中捕获键盘的方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2019-03-03
  • pytorch关于Tensor的数据类型说明

    pytorch关于Tensor的数据类型说明

    这篇文章主要介绍了pytorch关于Tensor的数据类型说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
    2022-07-07
  • python 移除字符串尾部的数字方法

    python 移除字符串尾部的数字方法

    今天小编就为大家分享一篇python 移除字符串尾部的数字方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2018-07-07
  • Python selenium webdriver 基本使用代码分享

    Python selenium webdriver 基本使用代码分享

    这篇文章主要介绍了Python selenium webdriver 基本使用,本文仅仅简单介绍了selenium的使用常用代码分享,需要的朋友可以参考下
    2022-11-11
  • 使用Python Flask实现简易文件上传功能

    使用Python Flask实现简易文件上传功能

    在平时工作中,文件上传是一项常见的需求,例如将应用异常时通过脚本生成的dump文件收集起来进行分析,但实现起来却可能相当复杂,在本文中,我们将探讨如何使用Flask实现文件上传功能,编写Dockerfile将应用程序通过docker部署,需要的朋友可以参考下
    2024-05-05
  • 探索Python定时任务实现高效时间管理

    探索Python定时任务实现高效时间管理

    这篇文章主要为大家介绍了探索Python定时任务高效实现高效时间管理,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2024-01-01
  • python读取文件名及后缀详解

    python读取文件名及后缀详解

    下面小编就为大家分享一篇关于python读取文件名及后缀的文章,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2021-10-10
  • Python创建高强度密码生成工具方法实例

    Python创建高强度密码生成工具方法实例

    这篇文章主要为大家介绍了Python创建高强度密码生成工具方法实例,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2023-12-12
  • 使用pytorch和torchtext进行文本分类的实例

    使用pytorch和torchtext进行文本分类的实例

    今天小编就为大家分享一篇使用pytorch和torchtext进行文本分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
    2020-01-01

最新评论