windowns使用PySpark环境配置和基本操作

 更新时间:2021年05月17日 12:05:04   作者:Nick_Spider  
pyspark是Spark对Python的api接口,可以在Python环境中通过调用pyspark模块来操作spark,这篇文章主要介绍了windowns使用PySpark环境配置和基本操作,感兴趣的可以了解一下

下载依赖

首先需要下载hadoop和spark,解压,然后设置环境变量。
hadoop清华源下载
spark清华源下载

HADOOP_HOME => /path/hadoop
SPARK_HOME => /path/spark

安装pyspark。

pip install pyspark

基本使用

可以在shell终端,输入pyspark,有如下回显:

输入以下指令进行测试,并创建SparkContext,SparkContext是任何spark功能的入口点。

>>> from pyspark import SparkContext
>>> sc = SparkContext("local", "First App")

如果以上不会报错,恭喜可以开始使用pyspark编写代码了。
不过,我这里使用IDE来编写代码,首先我们先在终端执行以下代码关闭SparkContext。

>>> sc.stop()

下面使用pycharm编写代码,如果修改了环境变量需要先重启pycharm。
在pycharm运行如下程序,程序会起本地模式的spark计算引擎,通过spark统计abc.txt文件中a和b出现行的数量,文件路径需要自己指定。

from pyspark import SparkContext

sc = SparkContext("local", "First App")
logFile = "abc.txt"
logData = sc.textFile(logFile).cache()
numAs = logData.filter(lambda s: 'a' in s).count()
numBs = logData.filter(lambda s: 'b' in s).count()
print("Line with a:%i,line with b:%i" % (numAs, numBs))

运行结果如下:

20/03/11 16:15:57 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
20/03/11 16:15:58 WARN Utils: Service 'SparkUI' could not bind on port 4040. Attempting port 4041.
Line with a:3,line with b:1

这里说一下,同样的工作使用python可以做,spark也可以做,使用spark主要是为了高效的进行分布式计算。
戳pyspark教程
戳spark教程

RDD

RDD代表Resilient Distributed Dataset,它们是在多个节点上运行和操作以在集群上进行并行处理的元素,RDD是spark计算的操作对象。
一般,我们先使用数据创建RDD,然后对RDD进行操作。
对RDD操作有两种方法:
Transformation(转换) - 这些操作应用于RDD以创建新的RDD。例如filter,groupBy和map。
Action(操作) - 这些是应用于RDD的操作,它指示Spark执行计算并将结果发送回驱动程序,例如count,collect等。

创建RDD

parallelize是从列表创建RDD,先看一个例子:

from pyspark import SparkContext


sc = SparkContext("local", "count app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"
     ])
print(words)

结果中我们得到一个对象,就是我们列表数据的RDD对象,spark之后可以对他进行操作。

ParallelCollectionRDD[0] at parallelize at PythonRDD.scala:195

Count

count方法返回RDD中的元素个数。

from pyspark import SparkContext


sc = SparkContext("local", "count app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"
     ])
print(words)

counts = words.count()
print("Number of elements in RDD -> %i" % counts)

返回结果:

Number of elements in RDD -> 8

Collect

collect返回RDD中的所有元素。

from pyspark import SparkContext


sc = SparkContext("local", "collect app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"
     ])
coll = words.collect()
print("Elements in RDD -> %s" % coll)

返回结果:

Elements in RDD -> ['scala', 'java', 'hadoop', 'spark', 'akka', 'spark vs hadoop', 'pyspark', 'pyspark and spark']

foreach

每个元素会使用foreach内的函数进行处理,但是不会返回任何对象。
下面的程序中,我们定义的一个累加器accumulator,用于储存在foreach执行过程中的值。

from pyspark import SparkContext
sc = SparkContext("local", "ForEach app")

accum = sc.accumulator(0)
data = [1, 2, 3, 4, 5]
rdd = sc.parallelize(data)


def increment_counter(x):
    print(x)
    accum.add(x)
 return 0

s = rdd.foreach(increment_counter)
print(s)  # None
print("Counter value: ", accum)

返回结果:

None
Counter value:  15

filter

返回一个包含元素的新RDD,满足过滤器的条件。

from pyspark import SparkContext
sc = SparkContext("local", "Filter app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"]
)
words_filter = words.filter(lambda x: 'spark' in x)
filtered = words_filter.collect()
print("Fitered RDD -> %s" % (filtered))

 

Fitered RDD -> ['spark', 'spark vs hadoop', 'pyspark', 'pyspark and spark']

也可以改写成这样:

from pyspark import SparkContext
sc = SparkContext("local", "Filter app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"]
)


def g(x):
    for i in x:
        if "spark" in x:
            return i

words_filter = words.filter(g)
filtered = words_filter.collect()
print("Fitered RDD -> %s" % (filtered))

map

将函数应用于RDD中的每个元素并返回新的RDD。

from pyspark import SparkContext
sc = SparkContext("local", "Map app")
words = sc.parallelize(
    ["scala",
     "java",
     "hadoop",
     "spark",
     "akka",
     "spark vs hadoop",
     "pyspark",
     "pyspark and spark"]
)
words_map = words.map(lambda x: (x, 1, "_{}".format(x)))
mapping = words_map.collect()
print("Key value pair -> %s" % (mapping))

返回结果:

Key value pair -> [('scala', 1, '_scala'), ('java', 1, '_java'), ('hadoop', 1, '_hadoop'), ('spark', 1, '_spark'), ('akka', 1, '_akka'), ('spark vs hadoop', 1, '_spark vs hadoop'), ('pyspark', 1, '_pyspark'), ('pyspark and spark', 1, '_pyspark and spark')]

Reduce

执行指定的可交换和关联二元操作后,然后返回RDD中的元素。

from pyspark import SparkContext
from operator import add


sc = SparkContext("local", "Reduce app")
nums = sc.parallelize([1, 2, 3, 4, 5])
adding = nums.reduce(add)
print("Adding all the elements -> %i" % (adding))

 这里的add是python内置的函数,可以使用ide查看:

def add(a, b):
    "Same as a + b."
    return a + b

reduce会依次对元素相加,相加后的结果加上其他元素,最后返回结果(RDD中的元素)。

Adding all the elements -> 15

Join

返回RDD,包含两者同时匹配的键,键包含对应的所有元素。

from pyspark import SparkContext


sc = SparkContext("local", "Join app")
x = sc.parallelize([("spark", 1), ("hadoop", 4), ("python", 4)])
y = sc.parallelize([("spark", 2), ("hadoop", 5)])
print("x =>", x.collect())
print("y =>", y.collect())
joined = x.join(y)
final = joined.collect()
print( "Join RDD -> %s" % (final))

返回结果:

x => [('spark', 1), ('hadoop', 4), ('python', 4)]
y => [('spark', 2), ('hadoop', 5)]
Join RDD -> [('hadoop', (4, 5)), ('spark', (1, 2))]

到此这篇关于windowns使用PySpark环境配置和基本操作的文章就介绍到这了,更多相关PySpark环境配置 内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

相关文章

  • Django之第三方平台QQ授权登录的实现

    Django之第三方平台QQ授权登录的实现

    本文主要介绍了Django之第三方平台QQ授权登录的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
    2023-05-05
  • 五分钟学会Python 模块和包、文件

    五分钟学会Python 模块和包、文件

    通过学习本文可以五分钟掌握Python 模块和包、文件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2021-08-08
  • 搭建pypi私有仓库实现过程详解

    搭建pypi私有仓库实现过程详解

    这篇文章主要介绍了搭建pypi私有仓库实现过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2020-11-11
  • scipy.interpolate插值方法实例讲解

    scipy.interpolate插值方法实例讲解

    这篇文章主要介绍了scipy.interpolate插值方法介绍,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
    2022-12-12
  • 利用Python对中国500强排行榜数据进行可视化分析

    利用Python对中国500强排行榜数据进行可视化分析

    这篇文章主要介绍了利用Python对中国500强排行榜数据进行可视化分析,从不同角度去对数据进行统计分析,可视化展示,下文详细内容介绍需要的小伙伴可以参考一下
    2022-05-05
  • Python进行密码学反向密码教程

    Python进行密码学反向密码教程

    这篇文章主要为大家介绍了Python进行密码学反向密码的教程详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
    2022-05-05
  • Django Rest framework权限的详细用法

    Django Rest framework权限的详细用法

    这篇文章主要介绍了Django Rest framework权限的详细用法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-07-07
  • python中获得当前目录和上级目录的实现方法

    python中获得当前目录和上级目录的实现方法

    这篇文章主要介绍了python中获得当前目录和上级目录的实现方法,需要的朋友可以参考下
    2017-10-10
  • python assert断言的实例用法

    python assert断言的实例用法

    在本篇文章里小编给大家整理了一篇关于python assert断言的实例用法,有需要的朋友们可以跟着学习参考下。
    2021-09-09
  • python  logging日志打印过程解析

    python logging日志打印过程解析

    这篇文章主要介绍了python logging日志打印过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下
    2019-10-10

最新评论